Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Spotlight on Stem Cell Homing and Mobilisation

Mobilization of stem and progenitor cells in cardiovascular diseases

Abstract

Circulating bone marrow (BM)-derived stem and progenitor cells (SPCs) participate in turnover of vascular endothelium and myocardial repair after acute coronary syndromes. Acute myocardial infarction (MI) produces a generalized inflammatory reaction, including mobilization of SPCs, increased local production of chemoattractants in the ischemic myocardium, as well as neural and humoral signals activating the SPC egress from the BM. Several types of circulating BM cells were identified in the peripheral blood, including hematopoietic stem cells, endothelial progenitor cells, mesenchymal stromal cells, circulating angiogenic cells and pluripotent very small embryonic-like cells; however, the contribution of circulating cells to the myocardial and endothelial repair is still unknown. The number and function of these cells is impaired in patients with diabetes and other cardiovascular risk factors, but can be improved by physical exercise and use of statins. The mobilization of SPCs in acute coronary syndromes and stable coronary artery disease seems to predict the clinical outcomes in selected groups of patients. Interpretation of the findings has to incorporate other factors that modulate the process of mobilization, such as coexisting diseases, age and medications. This review discusses the mobilization of SPCs in acute ischemia (MI, stroke), as well as in stable cardiovascular disease, and highlights the possibility of using the SPC as a marker of cardiovascular risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Wojakowski W, Kucia M, Kazmierski M, Ratajczak MZ, Tendera M . Circulating progenitor cells in stable coronary heart disease and acute coronary syndromes: relevant reparatory mechanism? Heart 2008; 94: 27–33.

    Article  CAS  PubMed  Google Scholar 

  2. Wollert KC, Drexler H . Clinical applications of stem cells for the heart. Circ Res 2005; 96: 151–163.

    Article  CAS  PubMed  Google Scholar 

  3. Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 2001; 103: 2776–2779.

    Article  CAS  PubMed  Google Scholar 

  4. Ingram DA, Caplice NM, Yoder MC . Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood 2005; 106: 1525–1531.

    Article  CAS  PubMed  Google Scholar 

  5. Urbich C, Dimmeler S . Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 2004; 95: 343–353.

    Article  CAS  PubMed  Google Scholar 

  6. Leor J, Marber M . Endothelial progenitors: a new Tower of Babel? J Am Coll Cardiol 2006; 48: 1588–1590.

    Article  PubMed  Google Scholar 

  7. Steinmetz M, Nickenig G, Werner N . Endothelial-regenerating cells: an expanding universe. Hypertension 2010; 55: 593–599.

    Article  CAS  PubMed  Google Scholar 

  8. Massa M, Rosti V, Ferrario M, Campanelli R, Ramajoli I, Rosso R et al. Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood 2005; 105: 199–206.

    Article  CAS  PubMed  Google Scholar 

  9. Brehm M, Ebner P, Picard F, Urbien R, Turan G, Strauer BE . Enhanced mobilization of CD34(+) progenitor cells expressing cell adhesion molecules in patients with STEMI. Clin Res Cardiol 2009; 98: 477–486.

    Article  CAS  PubMed  Google Scholar 

  10. Gaspardone A, Menghini F, Mazzuca V, Skossyreva O, Barbato G, de Fabritiis P . Progenitor cell mobilisation in patients with acute and chronic coronary artery disease. Heart 2006; 92: 253–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. George J, Goldstein E, Abashidze S, Deutsch V, Shmilovich H, Finkelstein A et al. Circulating endothelial progenitor cells in patients with unstable angina: association with systemic inflammation. Eur Heart J 2004; 25: 1003–1008.

    Article  CAS  PubMed  Google Scholar 

  12. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T et al. Isolation of Putative Progenitor Endothelial Cells for Angiogenesis. Science 1997; 275: 964–966.

    Article  CAS  PubMed  Google Scholar 

  13. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000; 95: 952–958.

    CAS  PubMed  Google Scholar 

  14. Rohde E, Malischnik C, Thaler D, Maierhofer T, Linkesch W, Lanzer G et al. Blood monocytes mimic endothelial progenitor cells. Stem cells (Dayton, OH) 2006; 24: 357–367.

    Article  Google Scholar 

  15. Elsheikh E, Uzunel M, He Z, Holgersson J, Nowak G, Sumitran-Holgersson S . Only a specific subset of human peripheral-blood monocytes has endothelial-like functional capacity. Blood 2005; 106: 2347–2355.

    Article  CAS  PubMed  Google Scholar 

  16. Krankel N, Katare RG, Siragusa M, Barcelos LS, Campagnolo P, Mangialardi G et al. Role of kinin B2 receptor signaling in the recruitment of circulating progenitor cells with neovascularization potential. Circ Res 2008; 103: 1335–1343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmidt-Lucke C, Fichtlscherer S, Aicher A, Tschope C, Schultheiss HP, Zeiher AM et al. Quantification of circulating endothelial progenitor cells using the modified ISHAGE protocol. PLoS One 2010; 5: e13790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003; 348: 593–600.

    Article  PubMed  Google Scholar 

  19. Povsic TJ, Zavodni KL, Kelly FL, Zhu S, Goldschmidt-Clermont PJ, Dong C et al. Circulating progenitor cells can be reliably identified on the basis of aldehyde dehydrogenase activity. J Am Coll Cardiol 2007; 50: 2243–2248.

    Article  CAS  PubMed  Google Scholar 

  20. Boos CJ, Lip GY, Blann AD . Circulating endothelial cells in cardiovascular disease. J Am Coll Cardiol 2006; 48: 1538–1547.

    Article  CAS  PubMed  Google Scholar 

  21. Fadini GP, de Kreutzenberg SV, Coracina A, Baesso I, Agostini C, Tiengo A et al. Circulating CD34+ cells, metabolic syndrome, and cardiovascular risk. Eur Heart J 2006; 27: 2247–2255.

    Article  CAS  PubMed  Google Scholar 

  22. Wojakowski W, Tendera M, Michalowska A, Majka M, Kucia M, Maslankiewicz K et al. Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 2004; 110: 3213–3220.

    Article  CAS  PubMed  Google Scholar 

  23. Leone AM, Rutella S, Bonanno G, Abbate A, Rebuzzi AG, Giovannini S et al. Mobilization of bone marrow-derived stem cells after myocardial infarction and left ventricular function. Eur Heart J 2005; 26: 1196–1204.

    Article  PubMed  Google Scholar 

  24. Zuba-Surma EK, Ratajczak MZ . Overview of very small embryonic-like stem cells (VSELs) and methodology of their identification and isolation by flow cytometric methods. Curr Protoc Cytom 2010, Chapter 9: Unit9, 29.

  25. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J et al. A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 2006; 20: 857–869.

    Article  CAS  PubMed  Google Scholar 

  26. Wojakowski W, Kucia M, Zuba-Surma E, Jadczyk T, Ksiazek B, Ratajczak MZ et al. Very small embryonic-like stem cells in cardiovascular repair. Pharmacol Ther 2011; 129: 21–28.

    Article  CAS  PubMed  Google Scholar 

  27. Wojakowski W, Tendera M, Kucia M, Zuba-Surma E, Paczkowska E, Ciosek J et al. Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. J Am Coll Cardiol 2009; 53: 1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wojakowski W, Tendera M, Kucia M, Zuba-Surma E, Milewski K, Wallace-Bradley D et al. Cardiomyocyte differentiation of bone marrow-derived Oct-4+CXCR4+SSEA-1+ very small embryonic-like stem cells. Int J Oncol 2010; 37: 237–247.

    CAS  PubMed  Google Scholar 

  29. Wang Y, Johnsen HE, Mortensen S, Bindslev L, Ripa RS, Haack-Sorensen M et al. Changes in circulating mesenchymal stem cells, stem cell homing factor, and vascular growth factors in patients with acute ST elevation myocardial infarction treated with primary percutaneous coronary intervention. Heart 2006; 92: 768–774.

    Article  CAS  PubMed  Google Scholar 

  30. Iso Y, Spees JL, Sato T, Koba S, Kobayashi YYT et al. CD271 identifies human bone marrow stem/progenitor cells with a proangiogenic potential and circulating progenitor cells mobilized after acute myocardial infarction. J Am Coll Cardiol 2010; 55: A176.E167.

    Article  Google Scholar 

  31. Paczkowska E, Kucia M, Koziarska D, Halasa M, Safranow K, Masiuk M et al. Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke 2009; 40: 1237–1244.

    Article  CAS  PubMed  Google Scholar 

  32. Chu K, Jung KH, Lee ST, Park HK, Sinn DI, Kim JM et al. Circulating endothelial progenitor cells as a new marker of endothelial dysfunction or repair in acute stroke. Stroke 2008; 39: 1441–1447.

    Article  CAS  PubMed  Google Scholar 

  33. Sandri M, Beck EB, Adams V, Gielen S, Lenk K, Hollriegel R et al. Maximal exercise, limb ischemia, and endothelial progenitor cells. Eur J Cardiovasc Prev Rehabil 2011; 18: 55–64.

    Article  PubMed  Google Scholar 

  34. Kim SK, Pak HN, Park JH, Choi JI, Nam MH, Jo Y et al. Non-ischaemic titrated cardiac injury caused by radiofrequency catheter ablation of atrial fibrillation mobilizes CD34-positive mononuclear cells by non-stromal cell-derived factor-1alpha mechanism. Europace 2009; 11: 1024–1031.

    Article  PubMed  Google Scholar 

  35. Stein A, Wessling G, Deisenhofer I, Busch G, Steppich B, Estner H et al. Systemic inflammatory changes after pulmonary vein radiofrequency ablation do not alter stem cell mobilization. Europace 2008; 10: 444–449.

    Article  PubMed  Google Scholar 

  36. Adams V, Lenk K, Linke A, Lenz D, Erbs S, Sandri M et al. Increase of circulating endothelial progenitor cells in patients with coronary artery disease after exercise-induced ischemia. Arterioscler Thromb Vasc Biol 2004; 24: 684–690.

    Article  CAS  PubMed  Google Scholar 

  37. Theiss HD, David R, Engelmann MG, Barth A, Schotten K, Naebauer M et al. Circulation of CD34+ progenitor cell populations in patients with idiopathic dilated and ischaemic cardiomyopathy (DCM and ICM). Eur Heart J 2007; 28: 1258–1264.

    Article  PubMed  Google Scholar 

  38. Kucia M, Dawn B, Hunt G, Guo Y, Wysoczynski M, Majka M et al. Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res 2004; 95: 1191–1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ratajczak MZ, Lee H, Wysoczynski M, Wan W, Marlicz W, Laughlin MJ et al. Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 2010; 24: 976–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ratajczak MZ, Kim CH, Wojakowski W, Janowska-Wieczorek A, Kucia M, Ratajczak J . Innate immunity as orchestrator of stem cell mobilization. Leukemia 2010; 24: 1667–1675.

    Article  CAS  PubMed  Google Scholar 

  41. Nian M, Lee P, Khaper N, Liu P . Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 2004; 94: 1543–1553.

    Article  CAS  PubMed  Google Scholar 

  42. Kucia M, Wojakowski W, Reca R, Machalinski B, Gozdzik J, Majka M et al. The migration of bone marrow-derived non-hematopoietic tissue-committed stem cells is regulated in an SDF-1-, HGF-, and LIF-dependent manner. Arch Immunol Ther Exp (Warsz) 2006; 54: 121–135.

    Article  CAS  Google Scholar 

  43. Atsuhiko Oikawa MS, Quaini F, Mangialardi G, Katare RG, Caporali A, van Buul JD et al. Diabetes Mellitus Induces Bone Marrow Microangiopathy. Arterioscler Thromb Vasc Biol 2010; 30: 498–508.

    Article  CAS  PubMed  Google Scholar 

  44. Heiss C, Keymel S, Niesler U, Ziemann J, Kelm M, Kalka C . Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol 2005; 45: 1441–1448.

    Article  CAS  PubMed  Google Scholar 

  45. Kondo T, Shintani S, Maeda K, Hayashi M, Inden Y, Numaguchi Y et al. The number and function of circulating CD34+CD133+ progenitor cells decreased in stable coronary artery disease but not in acute myocardial infarction. Heart Asia 2010; 2: 20–23.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wojakowski W, Tendera M, Zebzda A, Michalowska A, Majka M, Kucia M et al. Mobilization of CD34(+), CD117(+), CXCR4(+), c-met(+) stem cells is correlated with left ventricular ejection fraction and plasma NT-proBNP levels in patients with acute myocardial infarction. Eur Heart J 2006; 27: 283–289.

    Article  CAS  PubMed  Google Scholar 

  47. Numaguchi Y, Sone T, Okumura K, Ishii M, Morita Y, Kubota R et al. The impact of the capability of circulating progenitor cell to differentiate on myocardial salvage in patients with primary acute myocardial infarction. Circulation 2006; 114 (1 Suppl): I114–I119.

    PubMed  Google Scholar 

  48. Porto I, Leone AM, De Maria GL, Craig CH, Tritarelli A, Camaioni C et al. Are endothelial progenitor cells mobilized by myocardial ischemia or myocardial necrosis? A cardiac magnetic resonance study. Atherosclerosis 2011, (in press).

  49. Porto I, Biasucci LM, De Maria GL, Di Vito L, Leone AM, Niccoli G et al. Increased levels of circulating endothelial progenitor cells in intracoronary blood of ST-elevation myocardial infarction patients correlate with microvascular damage. J Am Coll Cardiol 2010; 55: A187.E1751.

    Article  Google Scholar 

  50. Boos CJ, Balakrishnan B, Jessani S, Blann AD, Lip GY . Effects of percutaneous coronary intervention on peripheral venous blood circulating endothelial cells and plasma indices of endothelial damage/dysfunction. Chest 2007; 132: 1920–1926.

    Article  CAS  PubMed  Google Scholar 

  51. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 2005; 353: 999–1007.

    Article  CAS  PubMed  Google Scholar 

  52. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 2001; 89: E1–E7.

    Article  CAS  PubMed  Google Scholar 

  53. Michowitz Y, Goldstein E, Wexler D, Sheps D, Keren G, George J . Circulating endothelial progenitor cells and clinical outcome in patients with congestive heart failure. Heart 2007; 93: 1046–1050.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fadini GP, Maruyama S, Ozaki T, Taguchi A, Meigs J, Dimmeler S et al. Circulating progenitor cell count for cardiovascular risk stratification: a pooled analysis. PLoS One 2010; 5: e11488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schwartzenberg S, Deutsch V, Maysel-Auslender S, Kissil S, Keren G, George J . Circulating apoptotic progenitor cells: a novel biomarker in patients with acute coronary syndromes. Arterioscler Thromb Vasc Biol 2007; 27: e27–e31.

    Article  CAS  PubMed  Google Scholar 

  56. Giannotti G, Doerries C, Mocharla PS, Mueller MF, Bahlmann FH, Horvath T et al. Impaired Endothelial Repair Capacity of Early Endothelial Progenitor Cells in Prehypertension. Relation to Endothelial Dysfunction. Hypertension 2010; 55: 1389–1397.

    Article  CAS  PubMed  Google Scholar 

  57. Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR et al. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 2002; 106: 2781–2786.

    Article  PubMed  Google Scholar 

  58. Sorrentino SA, Bahlmann FH, Besler C, Muller M, Schulz S, Kirchhoff N et al. Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus: restoration by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation 2007; 116: 163–173.

    Article  CAS  PubMed  Google Scholar 

  59. Sasaki K, Heeschen C, Aicher A, Ziebart T, Honold J, Urbich C et al. Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhancer AVE9488 enhances their functional activity for cell therapy. Proc Natl Acad Sci USA 2006; 103: 14537–14541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li TS, Kubo M, Ueda K, Murakami M, Ohshima M, Kobayashi T et al. Identification of risk factors related to poor angiogenic potency of bone marrow cells from different patients. Circulation 2009; 120 (11 Suppl): S255–S261.

    Article  PubMed  Google Scholar 

  61. Britten MB, Abolmaali ND, Assmus B, Lehmann R, Honold J, Schmitt J et al. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation 2003; 108: 2212–2218.

    Article  CAS  PubMed  Google Scholar 

  62. Assmus B, Fischer-Rasokat U, Honold J, Seeger FH, Fichtlscherer S, Tonn T et al. Transcoronary transplantation of functionally competent BMCs is associated with a decrease in natriuretic peptide serum levels and improved survival of patients with chronic postinfarction heart failure: results of the TOPCARE-CHD Registry. Circ Res 2007; 100: 1234–1241.

    Article  CAS  PubMed  Google Scholar 

  63. Roncalli J, Mouquet F, Piot C, Trochu JN, Le Corvoisier P, Neuder Y et al. Intracoronary autologous mononucleated bone marrow cell infusion for acute myocardial infarction: results of the randomized multicenter BONAMI trial. Eur Heart J 2010, (in press).

  64. Sandri M, Adams V, Gielen S, Linke A, Lenk K, Krankel N et al. Effects of exercise and ischemia on mobilization and functional activation of blood-derived progenitor cells in patients with ischemic syndromes: results of 3 randomized studies. Circulation 2005; 111: 3391–3399.

    Article  PubMed  Google Scholar 

  65. Bonsignore MR, Morici G, Riccioni R, Huertas A, Petrucci E, Veca M et al. Hemopoietic and angiogenetic progenitors in healthy athletes: different responses to endurance and maximal exercise. J Appl Physiol 2010; 109: 60–67.

    Article  CAS  PubMed  Google Scholar 

  66. Brehm M, Picard F, Ebner P, Turan G, Bolke E, Kostering M et al. Effects of exercise training on mobilization and functional activity of blood-derived progenitor cells in patients with acute myocardial infarction. Eur J Med Res 2009; 14: 393–405.

    PubMed  PubMed Central  Google Scholar 

  67. Van Craenenbroeck EM, Beckers PJ, Possemiers NM, Wuyts K, Frederix G, Hoymans VY et al. Exercise acutely reverses dysfunction of circulating angiogenic cells in chronic heart failure. Eur Heart J 2010; 31: 1924–1934.

    Article  CAS  PubMed  Google Scholar 

  68. Urbich C, Dimmeler S . Risk factors for coronary artery disease, circulating endothelial progenitor cells, and the role of HMG-CoA reductase inhibitors. Kidney Int 2005; 67: 1672–1676.

    Article  CAS  PubMed  Google Scholar 

  69. Spyridopoulos I, Haendeler J, Urbich C, Brummendorf TH, Oh H, Schneider MD et al. Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells. Circulation 2004; 110: 3136–3142.

    Article  CAS  PubMed  Google Scholar 

  70. Vasa M, Fichtlscherer S, Adler K, Aicher A, Martin H, Zeiher AM et al. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation 2001; 103: 2885–2890.

    Article  CAS  PubMed  Google Scholar 

  71. Werner N, Nickenig G . Influence of cardiovascular risk factors on endothelial progenitor cells: limitations for therapy? Arterioscler Thromb Vasc Biol 2006; 26: 257–266.

    Article  CAS  PubMed  Google Scholar 

  72. Dzau VJ, Gnecchi M, Pachori AS, Morello F, Melo LG . Therapeutic potential of endothelial progenitor cells in cardiovascular diseases. Hypertension 2005; 46: 7–18.

    Article  CAS  PubMed  Google Scholar 

  73. Wojakowski W, Tendera M . Mobilization of bone marrow-derived progenitor cells in acute coronary syndromes. Folia Histochem Cytobiol 2005; 43: 229–232.

    PubMed  Google Scholar 

  74. Shin D, Hong SJ, Choi JH, Kim JH, Kim JS, Park JH et al. Red ginseng extracts improved coronary flow reserve and increased absolute numbers of various circulating angiogenic cells in patients with ST-elevation myocardial infarction. J Am Coll Cardiol 2010; 55: A100.E936.

    Article  Google Scholar 

  75. Heiss C, Jahn S, Taylor M, Real WM, Angeli FS, Wong ML et al. Improvement of endothelial function with dietary flavanols is associated with mobilization of circulating angiogenic cells in patients with coronary artery disease. J Am Coll Cardiol 2010; 56: 218–224.

    Article  CAS  PubMed  Google Scholar 

  76. DiFabio JM, Thomas GR, Zucco L, Kuliszewski MA, Bennett BM, Kutryk MJ et al. Nitroglycerin attenuates human endothelial progenitor cell differentiation, function, and survival. J Pharmacol Exp Ther 2006; 318: 117–123.

    Article  CAS  PubMed  Google Scholar 

  77. Fadini GP, Boscaro E, Albiero M, Menegazzo L, Frison V, de Kreutzenberg S et al. The oral dipeptidyl peptidase-4 inhibitor sitagliptin increases circulating endothelial progenitor cells in patients with type 2 diabetes: possible role of stromal-derived factor-1alpha. Diabetes Care 2010; 33: 1607–1609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Greenbaum AM, Link DC . Mechanisms of G-CSF-mediated hematopoietic stem and progenitor mobilization. Leukemia 2011; 25: 211–217.

    Article  CAS  PubMed  Google Scholar 

  79. Jujo K, Hamada H, Iwakura A, Thorne T, Sekiguchi H, Clarke T et al. CXCR4 blockade augments bone marrow progenitor cell recruitment to the neovasculature and reduces mortality after myocardial infarction. Proc Natl Acad Sci USA 2010; 107: 11008–11013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hristov M, Erl W, Weber PC . Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol 2003; 23: 1185–1189.

    Article  CAS  PubMed  Google Scholar 

  81. Hristov M, Weber C . The therapeutic potential of progenitor cells in ischemic heart disease–Past, present and future. Basic Res Cardiol 2006; 101: 1–7.

    Article  PubMed  Google Scholar 

  82. Hristov M, Weber C . Endothelial progenitor cells: characterization, pathophysiology, and possible clinical relevance. J Cell Mol Med 2004; 8: 498–508.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ruel M, Suuronen EJ, Song J, Kapila V, Gunning D, Waghray G et al. Effects of off-pump versus on-pump coronary artery bypass grafting on function and viability of circulating endothelial progenitor cells. J Thorac Cardiovasc Surg 2005; 130: 633–639.

    Article  PubMed  Google Scholar 

  84. Chen JZ, Zhang FR, Tao QM, Wang XX, Zhu JH, Zhu JH . Number and activity of endothelial progenitor cells from peripheral blood in patients with hypercholesterolaemia. Clin Sci (Lond) 2004; 107: 273–280.

    Article  CAS  Google Scholar 

  85. Kondo T, Hayashi M, Takeshita K, Numaguchi Y, Kobayashi K, Iino S et al. Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers. Arterioscler Thromb Vasc Biol 2004; 24: 1442–1447.

    Article  CAS  PubMed  Google Scholar 

  86. Muller-Ehmsen J, Braun D, Schneider T, Pfister R, Worm N, Wielckens K et al. Decreased number of circulating progenitor cells in obesity: beneficial effects of weight reduction. Eur Heart J 2008; 29: 1560–1568.

    Article  PubMed  Google Scholar 

  87. Fadini GP, Miorin M, Facco M, Bonamico S, Baesso I, Grego F et al. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol 2005; 45: 1449–1457.

    Article  CAS  PubMed  Google Scholar 

  88. Fadini GP, Boscaro E, de Kreutzenberg S, Agostini C, Seeger F, Dimmeler S et al. Time course and mechanisms of circulating progenitor cell reduction in the natural history of type 2 diabetes. Diabetes Care 2010; 33: 1097–1102.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Valgimigli M, Rigolin GM, Fucili A, Porta MD, Soukhomovskaia O, Malagutti P et al. CD34+ and endothelial progenitor cells in patients with various degrees of congestive heart failure. Circulation 2004; 110: 1209–1212.

    Article  CAS  PubMed  Google Scholar 

  90. Matsumoto Y, Adams V, Walther C, Kleinecke C, Brugger P, Linke A et al. Reduced number and function of endothelial progenitor cells in patients with aortic valve stenosis: a novel concept for valvular endothelial cell repair. Eur Heart J 2009; 30: 346–355.

    Article  PubMed  Google Scholar 

  91. Jickling G, Salam A, Mohammad A, Hussain MS, Scozzafava J, Nasser AM et al. Circulating endothelial progenitor cells and age-related white matter changes. Stroke 2009; 40: 3191–3196.

    Article  PubMed  Google Scholar 

  92. Asosingh K, Aldred MA, Vasanji A, Drazba J, Sharp J, Farver C et al. Circulating angiogenic precursors in idiopathic pulmonary arterial hypertension. Am J Pathol 2008; 172: 615–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Eizawa T, Ikeda U, Murakami Y, Matsui K, Yoshioka T, Suzuki C et al. Increase in circulating endothelial progenitor cells after aortic aneurysm repair. Heart Vessels 2004; 19: 107–110.

    Article  PubMed  Google Scholar 

  94. Gaspardone A, De Fabritiis P, Scaffa R, Nardi P, Palombi F, Versaci F et al. Stem cell mobilization after coronary artery bypass grafting]. Ital Heart J Suppl 2004; 5 (1 Suppl): 23–28.

    PubMed  Google Scholar 

  95. Mieno S, Ramlawi B, Boodhwani M, Clements RT, Minamimura K, Maki T et al. Role of Stromal-Derived Factor-1{alpha} in the Induction of Circulating CD34+CXCR4+ Progenitor Cells After Cardiac Surgery. Circulation 2006; 114 (1 Suppl): 186–192.

    Article  CAS  Google Scholar 

  96. Simper D, Wang S, Deb A, Holmes D, McGregor C, Frantz R et al. Endothelial progenitor cells are decreased in blood of cardiac allograft patients with vasculopathy and endothelial cells of noncardiac origin are enriched in transplant atherosclerosis. Circulation 2003; 108: 143–149.

    Article  PubMed  Google Scholar 

  97. Sugawara J, Mitsui-Saito M, Hoshiai T, Hayashi C, Kimura Y, Okamura K . Circulating endothelial progenitor cells during human pregnancy. J Clin Endocrinol Metab 2005; 90: 1845–1848.

    Article  CAS  PubMed  Google Scholar 

  98. Sugawara J, Mitsui-Saito M, Hayashi C, Hoshiai T, Senoo M, Chisaka H et al. Decrease and senescence of endothelial progenitor cells in patients with preeclampsia. J Clin Endocrinol Metab 2005; 90: 5329–5332.

    Article  CAS  PubMed  Google Scholar 

  99. Choi JH, Kim KL, Huh W, Kim B, Byun J, Suh W et al. Decreased number and impaired angiogenic function of endothelial progenitor cells in patients with chronic renal failure. Arterioscler Thromb Vasc Biol 2004; 24: 1246–1252.

    Article  CAS  PubMed  Google Scholar 

  100. Eizawa T, Murakami Y, Matsui K, Takahashi M, Muroi K, Amemiya M et al. Circulating endothelial progenitor cells are reduced in hemodialysis patients. Curr Med Res Opin 2003; 19: 627–633.

    Article  PubMed  Google Scholar 

  101. Herbrig K, Pistrosch F, Foerster S, Gross P . Endothelial progenitor cells in chronic renal insufficiency. Kidney Blood Press Res 2006; 29: 24–31.

    Article  PubMed  Google Scholar 

  102. Surdacki A, Marewicz E, Wieteska E, Szastak G, Rakowski T, Wieczorek-Surdacka E et al. Association between endothelial progenitor cell depletion in blood and mild-to-moderate renal insufficiency in stable angina. Nephrol Dial Transplant 2008; 23: 2265–2273.

    Article  CAS  PubMed  Google Scholar 

  103. Pirro M, Schillaci G, Romagno PF, Mannarino MR, Bagaglia F, Razzi R et al. Influence of Short-term Rosuvastatin Therapy on Endothelial Progenitor Cells and Endothelial Function. J Cardiovasc Pharmacol Ther 2009; 14: 14–21.

    Article  CAS  PubMed  Google Scholar 

  104. Liu X, Li Y, Liu Y, Luo Y, Wang D, Annex BH et al. Endothelial progenitor cells (EPCs) mobilized and activated by neurotrophic factors may contribute to pathologic neovascularization in diabetic retinopathy. Am J Pathol 2010; 176: 504–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Grisar J, Aletaha D, Steiner CW, Kapral T, Steiner S, Seidinger D et al. Depletion of endothelial progenitor cells in the peripheral blood of patients with rheumatoid arthritis. Circulation 2005; 111: 204–211.

    Article  PubMed  Google Scholar 

  106. Herbrig K, Haensel S, Oelschlaegel U, Pistrosch F, Foerster S, Passauer J . Endothelial dysfunction in patients with rheumatoid arthritis is associated with a reduced number and impaired function of endothelial progenitor cells. Ann Rheum Dis 2006; 65: 157–163.

    Article  CAS  PubMed  Google Scholar 

  107. Yamada M, Kubo H, Ishizawa K, Kobayashi S, Shinkawa M, Sasaki H . Increased circulating endothelial progenitor cells in patients with bacterial pneumonia: evidence that bone marrow derived cells contribute to lung repair. Thorax 2005; 60: 410–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fadini GP, Schiavon M, Cantini M, Baesso I, Facco M, Miorin M et al. Circulating progenitor cells are reduced in patients with severe lung disease. Stem cells (Dayton, OH) 2006; 24: 1806–1813.

    Article  Google Scholar 

  109. Palange P, Testa U, Huertas A, Calabro L, Antonucci R, Petrucci E et al. Circulating haemopoietic and endothelial progenitor cells are decreased in COPD. Eur Respir J 2006; 27: 529–541.

    Article  CAS  PubMed  Google Scholar 

  110. Lee ST, Chu K, Jung KH, Park HK, Kim DH, Bahn JJ et al. Reduced circulating angiogenic cells in Alzheimer disease. Neurology 2009; 72: 1858–1863.

    Article  PubMed  Google Scholar 

  111. Dome B, Timar J, Dobos J, Meszaros L, Raso E, Paku S et al. Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Cancer Res 2006; 66: 7341–7347.

    Article  CAS  PubMed  Google Scholar 

  112. Shakoor SK, Aldibbiat A, Ingoe LE, Campbell SC, Sibal L, Shaw J et al. Endothelial progenitor cells in subclinical hypothyroidism: the effect of thyroid hormone replacement therapy. J Clin Endocrinol Metab 2010; 95: 319–322.

    Article  CAS  PubMed  Google Scholar 

  113. Brunner S, Theiss HD, Murr A, Negele T, Franz WM . Primary hyperparathyroidism is associated with increased circulating bone marrow-derived progenitor cells. Am J Physiol Endocrinol Metab 2007; 293: E1670–E1675.

    Article  CAS  PubMed  Google Scholar 

  114. Padfield GJ, Tura O, Haeck MLA, Short A, Freyer E, Barclay GR et al. Circulating endothelial progenitor cells are not affected by acute systemic inflammation. Am J Physiol Heart Circ Physiol 2010; 298: H2054–H2061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Thill M, Strunnikova NV, Berna MJ, Gordiyenko N, Schmid K, Cousins SW et al. Late outgrowth endothelial progenitor cells in patients with age-related macular degeneration. Invest Ophthalmol Vis Sci 2008; 49: 2696–2708.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the European Union structural funds—Innovative Economy Operational Programme, Grant No. POIG 01.02-00-109/09 ‘Innovative methods of stem cells applications in medicine’, Polish Ministry of Science and Higher Education grants 0651/P01/2007/32 and 2422/P01/2007/32, and the Servier Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Wojakowski.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wojakowski, W., Landmesser, U., Bachowski, R. et al. Mobilization of stem and progenitor cells in cardiovascular diseases. Leukemia 26, 23–33 (2012). https://doi.org/10.1038/leu.2011.184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.184

Keywords

This article is cited by

Search

Quick links