Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Regulatory T cells and immunodeficiency in mycosis fungoides and Sézary syndrome

Abstract

Cutaneous T-cell lymphoma (CTCL) is the term for diseases characterized by primary accumulation of malignant T cells in the skin. Patients with the two predominant clinical forms of CTCL called mycosis fungoides (MF) and Sézary syndrome (SS) characteristically develop severe immunodeficiency during disease progression and consequently patients with advanced disease frequently die of infections and not from the tumor burden. For decades, it has been suspected that the malignant T cells actively drive the evolving immunodeficiency to avoid antitumor immunity, yet, the underlying mechanisms remain unclear. The identification of a subset of highly immunosuppressive regulatory T cells (Tregs) triggered a variety of studies investigating if MF and SS are malignant proliferations of Tregs but seemingly discordant findings have been reported. Here, we review the literature to clarify the role of Tregs in MF and SS and discuss the potential mechanisms driving the immunodeficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Willemze R, Jaffe ES, Burg G, Cerroni L, Berti E, Swerdlow SH et al. WHO-EORTC classification for cutaneous lymphomas. Blood 2005; 105: 3768–3785.

    CAS  PubMed  Google Scholar 

  2. Kim EJ, Hess S, Richardson SK, Newton S, Showe LC, Benoit BM et al. Immunopathogenesis and therapy of cutaneous T-cell lymphoma. J Clin Invest 2005; 115: 798–812.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hwang ST, Janik JE, Jaffe ES, Wilson WH . Mycosis fungoides and Sezary syndrome. Lancet 2008; 371: 945–957.

    CAS  PubMed  Google Scholar 

  4. Girardi M, Heald PW, Wilson LD . The pathogenesis of mycosis fungoides. N Engl J Med 2004; 350: 1978–1988.

    CAS  PubMed  Google Scholar 

  5. Vergier B, de MA, Beylot-Barry M, Vaillant L, Ekouevi D, Chene G et al. Transformation of mycosis fungoides: clinicopathological and prognostic features of 45 cases. French Study Group of Cutaneious Lymphomas. Blood 2000; 95: 2212–2218.

    CAS  PubMed  Google Scholar 

  6. Kim YH, Liu HL, Mraz-Gernhard S, Varghese A, Hoppe RT . Long-term outcome of 525 patients with mycosis fungoides and Sezary syndrome: clinical prognostic factors and risk for disease progression. Arch Dermatol 2003; 139: 857–866.

    PubMed  Google Scholar 

  7. Vonderheid EC, Bernengo MG, Burg G, Duvic M, Heald P, Laroche L et al. Update on erythrodermic cutaneous T-cell lymphoma: report of the International Society for Cutaneous Lymphomas. J Am Acad Dermatol 2002; 46: 95–106.

    PubMed  Google Scholar 

  8. Vowels BR, Lessin SR, Cassin M, Jaworsky C, Benoit B, Wolfe JT et al. Th2 cytokine mRNA expression in skin in cutaneous T-cell lymphoma. J Invest Dermatol 1994; 103: 669–673.

    CAS  PubMed  Google Scholar 

  9. Rook AH, Kuzel TM, Olsen EA . Cytokine therapy of cutaneous T-cell lymphoma: interferons, interleukin-12, and interleukin-2. Hematol Oncol Clin North Am 2003; 17: 1435–1448, ix.

    PubMed  Google Scholar 

  10. Berger CL, Wang N, Christensen I, Longley J, Heald P, Edelson RL . The immune response to class I-associated tumor-specific cutaneous T-cell lymphoma antigens. J Invest Dermatol 1996; 107: 392–397.

    CAS  PubMed  Google Scholar 

  11. Bagot M, Echchakir H, Mami-Chouaib F, Delfau-Larue MH, Charue D, Bernheim A et al. Isolation of tumor-specific cytotoxic CD4+ and CD4+CD8dim+ T-cell clones infiltrating a cutaneous T-cell lymphoma. Blood 1998; 91: 4331–4341.

    CAS  PubMed  Google Scholar 

  12. Vermeer MH, van DR, Dukers D, Bekkenk MW, Meijer CJ, Willemze R . CD8+ T cells in cutaneous T-cell lymphoma: expression of cytotoxic proteins, Fas ligand, and killing inhibitory receptors and their relationship with clinical behavior. J Clin Oncol 2001; 19: 4322–4329.

    CAS  PubMed  Google Scholar 

  13. Hoppe RT, Medeiros LJ, Warnke RA, Wood GS . CD8-positive tumor-infiltrating lymphocytes influence the long-term survival of patients with mycosis fungoides. J Am Acad Dermatol 1995; 32: 448–453.

    CAS  PubMed  Google Scholar 

  14. Asadullah K, Friedrich M, Docke WD, Jahn S, Volk HD, Sterry W . Enhanced expression of T-cell activation and natural killer cell antigens indicates systemic anti-tumor response in early primary cutaneous T-cell lymphoma. J Invest Dermatol 1997; 108: 743–747.

    CAS  PubMed  Google Scholar 

  15. Wysocka M, Benoit BM, Newton S, Azzoni L, Montaner LJ, Rook AH . Enhancement of the host immune responses in cutaneous T-cell lymphoma by CpG oligodeoxynucleotides and IL-15. Blood 2004; 104: 4142–4149.

    CAS  PubMed  Google Scholar 

  16. Bouaziz JD, Ortonne N, Giustiniani J, Schiavon V, Huet D, Bagot M et al. Circulating natural killer lymphocytes are potential cytotoxic effectors against autologous malignant cells in sezary syndrome patients. J Invest Dermatol 2005; 125: 1273–1278.

    CAS  PubMed  Google Scholar 

  17. Axelrod PI, Lorber B, Vonderheid EC . Infections complicating mycosis fungoides and Sezary syndrome. JAMA 1992; 267: 1354–1358.

    CAS  PubMed  Google Scholar 

  18. Broder S, Edelson RL, Lutzner MA, Nelson DL, MacDermott RP, Durm ME et al. The Sezary syndrome: a malignant proliferation of helper T cells. J Clin Invest 1976; 58: 1297–1306.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kansu E, Hauptman SP . Suppressor cell population in Sezary syndrome. Clin Immunol Immunopathol 1979; 12: 341–350.

    CAS  PubMed  Google Scholar 

  20. Hopper JE, Haren JM . Studies on a Sezary lymphocyte popoulation with T-suppressor activity. Suppression of Ig synthesis of normal peripheral blood lymphocytes. Clin Immunol Immunopathol 1980; 17: 43–54.

    CAS  PubMed  Google Scholar 

  21. Miedema F, Willemze R, Terpstra FG, van Vloten WA, Meijer CJ, Melief CJ . Regulatory activity of neoplastic T cells in Sezary syndrome on in vitro immunoglobulin production. Leuk Res 1984; 8: 873–884.

    CAS  PubMed  Google Scholar 

  22. Reinhold U, Pawelec G, Fratila A, Leippold S, Bauer R, Kreysel HW . Phenotypic and functional characterization of tumor infiltrating lymphocytes in mycosis fungoides: continuous growth of CD4+ CD45R+ T-cell clones with suppressor-inducer activity. J Invest Dermatol 1990; 94: 304–309.

    CAS  PubMed  Google Scholar 

  23. Sakaguchi S, Wing K, Miyara M . Regulatory T cells—a brief history and perspective. Eur J Immunol 2007; 37 Suppl 1: S116–S123.

    CAS  PubMed  Google Scholar 

  24. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M . Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155: 1151–1164.

    CAS  PubMed  Google Scholar 

  25. Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA . CD4+CD25high regulatory cells in human peripheral blood. J Immunol 2001; 167: 1245–1253.

    CAS  PubMed  Google Scholar 

  26. Hori S, Nomura T, Sakaguchi S . Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299: 1057–1061.

    CAS  PubMed  Google Scholar 

  27. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY . Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 2005; 22: 329–341.

    CAS  PubMed  Google Scholar 

  28. Khattri R, Cox T, Yasayko SA, Ramsdell F . An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003; 4: 337–342.

    CAS  PubMed  Google Scholar 

  29. Roncador G, Brown PJ, Maestre L, Hue S, Martinez-Torrecuadrada JL, Ling KL et al. Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur J Immunol 2005; 35: 1681–1691.

    CAS  PubMed  Google Scholar 

  30. Wan YY, Flavell RA . Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 2007; 445: 766–770.

    CAS  PubMed  Google Scholar 

  31. Williams LM, Rudensky AY . Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol 2007; 8: 277–284.

    CAS  PubMed  Google Scholar 

  32. Chatila TA, Blaeser F, Ho N, Lederman HM, Voulgaropoulos C, Helms C et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest 2000; 106: R75–R81.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001; 27: 68–73.

    CAS  PubMed  Google Scholar 

  34. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001; 27: 20–21.

    CAS  PubMed  Google Scholar 

  35. Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 2001; 27: 18–20.

    CAS  PubMed  Google Scholar 

  36. Bacchetta R, Passerini L, Gambineri E, Dai M, Allan SE, Perroni L et al. Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J Clin Invest 2006; 116: 1713–1722.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yagi H, Nomura T, Nakamura K, Yamazaki S, Kitawaki T, Hori S et al. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol 2004; 16: 1643–1656.

    CAS  PubMed  Google Scholar 

  38. Gavin MA, Torgerson TR, Houston E, DeRoos P, Ho WY, Stray-Pedersen A et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T-cell development. Proc Natl Acad Sci USA 2006; 103: 6659–6664.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sakaguchi S, Miyara M, Costantino CM, Hafler DA . FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 2010; 10: 490–500.

    CAS  PubMed  Google Scholar 

  40. Baron U, Floess S, Wieczorek G, Baumann K, Grutzkau A, Dong J et al. DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells. Eur J Immunol 2007; 37: 2378–2389.

    CAS  PubMed  Google Scholar 

  41. Huehn J, Polansky JK, Hamann A . Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat Rev Immunol 2009; 9: 83–89.

    CAS  PubMed  Google Scholar 

  42. Cozzo C, Larkin III J, Caton AJ . Cutting edge: self-peptides drive the peripheral expansion of CD4+CD25+ regulatory T cells. J Immunol 2003; 171: 5678–5682.

    CAS  PubMed  Google Scholar 

  43. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S . Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 2002; 3: 135–142.

    CAS  PubMed  Google Scholar 

  44. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 2006; 203: 1701–1711.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 2006; 203: 1693–1700.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Read S, Malmstrom V, Powrie F . Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 2000; 192: 295–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Curotto de Lafaille MA, Lafaille JJ . Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 2009; 30: 626–635.

    CAS  PubMed  Google Scholar 

  48. Workman CJ, Szymczak-Workman AL, Collison LW, Pillai MR, Vignali DA . The development and function of regulatory T cells. Cell Mol Life Sci 2009; 66: 2603–2622.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Shevach EM . Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 2009; 30: 636–645.

    CAS  PubMed  Google Scholar 

  50. Zou W . Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006; 6: 295–307.

    CAS  PubMed  Google Scholar 

  51. Berger CL, Tigelaar R, Cohen J, Mariwalla K, Trinh J, Wang N et al. Cutaneous T-cell lymphoma: malignant proliferation of T-regulatory cells. Blood 2005; 105: 1640–1647.

    CAS  PubMed  Google Scholar 

  52. Roncador G, Garcia JF, Garcia JF, Maestre L, Lucas E, Menarguez J et al. FOXP3, a selective marker for a subset of adult T-cell leukaemia/lymphoma. Leukemia 2005; 19: 2247–2253.

    CAS  PubMed  Google Scholar 

  53. Klemke CD, Fritzsching B, Franz B, Kleinmann EV, Oberle N, Poenitz N et al. Paucity of FOXP3+ cells in skin and peripheral blood distinguishes Sezary syndrome from other cutaneous T-cell lymphomas. Leukemia 2006; 20: 1123–1129.

    CAS  PubMed  Google Scholar 

  54. Wada DA, Wilcox RA, Weenig RH, Gibson LE . Paucity of intraepidermal FoxP3-positive T cells in cutaneous T-cell lymphoma in contrast with spongiotic and lichenoid dermatitis. J Cutan Pathol 2010; 37: 535–541.

    PubMed  Google Scholar 

  55. Hallermann C, Niermann C, Schulze HJ . Regulatory T-cell phenotype in association with large cell transformation of mycosis fungoides. Eur J Haematol 2007; 78: 260–263.

    PubMed  Google Scholar 

  56. Banham AH, Brown PJ, Lyne L, Schulze HJ, Hallermann C . Is FOXP3 expressed in cutaneous T-cell lymphomas? Eur J Haematol 2008; 80: 90–91.

    PubMed  Google Scholar 

  57. Gjerdrum LM, Woetmann A, Odum N, Burton CM, Rossen K, Skovgaard GL et al. FOXP3+ regulatory T cells in cutaneous T-cell lymphomas: association with disease stage and survival. Leukemia 2007; 21: 2512–2518.

    CAS  PubMed  Google Scholar 

  58. Kasprzycka M, Zhang Q, Witkiewicz A, Marzec M, Potoczek M, Liu X et al. Gamma c-signaling cytokines induce a regulatory T cell phenotype in malignant CD4+ T lymphocytes. J Immunol 2008; 181: 2506–2512.

    CAS  PubMed  Google Scholar 

  59. Clark RA, Shackelton JB, Watanabe R, Calarese A, Yamanaka KI, Campbell JJ et al. High scatter T cells (THS): a reliable biomarker for malignant T cells in cutaneous T-cell lymphoma. Blood 2011; 117: 1966–1976.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tiemessen MM, Mitchell TJ, Hendry L, Whittaker SJ, Taams LS, John S . Lack of suppressive CD4+CD25+FOXP3+ T cells in advanced stages of primary cutaneous T-cell lymphoma. J Invest Dermatol 2006; 126: 2217–2223.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Heid JB, Schmidt A, Oberle N, Goerdt S, Krammer PH, Suri-Payer E et al. FOXP3+CD25- tumor cells with regulatory function in Sézary syndrome. J Invest Dermatol 2009; 129: 2875–2885.

    CAS  PubMed  Google Scholar 

  62. Knol AC, Quereux G, Brocard A, Ballanger F, Khammari A, Nguyen JM et al. Absence of modulation of CD4+CD25 regulatory T cells in CTCL patients treated with bexarotene. Exp Dermatol 2010; 19: e95–e102.

    PubMed  Google Scholar 

  63. Solomon GJ, Magro CM . Foxp3 expression in cutaneous T-cell lymphocytic infiltrates. J Cutan Pathol 2008; 35: 1032–1039.

    PubMed  Google Scholar 

  64. Fujimura T, Okuyama R, Ito Y, Aiba S . Profiles of Foxp3+ regulatory T cells in eczematous dermatitis, psoriasis vulgaris and mycosis fungoides. Br J Dermatol 2008; 158: 1256–1263.

    CAS  PubMed  Google Scholar 

  65. Rao V, Saunes M, Jorstad S, Moen T . Cutaneous T cell lymphoma and graft-versus-host disease: a comparison of in vivo effects of extracorporeal photochemotherapy on Foxp3+ regulatory T cells. Clin Immunol 2009; 133: 303–313.

    CAS  PubMed  Google Scholar 

  66. Quaglino P, Comessatti A, Ponti R, Peroni A, Mola F, Fierro MT et al. Reciprocal modulation of circulating CD4+CD25+bright T cells induced by extracorporeal photochemotherapy in cutaneous T-cell lymphoma and chronic graft-versus-host-disease patients. Int J Immunopathol Pharmacol 2009; 22: 353–362.

    CAS  PubMed  Google Scholar 

  67. Capriotti E, Vonderheid EC, Thoburn CJ, Wasik MA, Bahler DW, Hess AD . Expression of T-plastin, FoxP3 and other tumor-associated markers by leukemic T-cells of cutaneous T-cell lymphoma. Leuk Lymphoma 2008; 49: 1190–1201.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Krejsgaard T, Gjerdrum LM, Ralfkiaer E, Lauenborg B, Eriksen KW, Mathiesen AM et al. Malignant Tregs express low molecular splice forms of FOXP3 in Sezary syndrome. Leukemia 2008; 22: 2230–2239.

    CAS  PubMed  Google Scholar 

  69. Wong HK, Wilson AJ, Gibson HM, Hafner MS, Hedgcock CJ, Berger CL et al. Increased expression of CTLA-4 in malignant T cells from patients with mycosis fungoides—cutaneous T-cell lymphoma. J Invest Dermatol 2006; 126: 212–219.

    CAS  PubMed  Google Scholar 

  70. Papadavid E, Economidou J, Psarra A, Kapsimali V, Mantzana V, Antoniou C et al. The relevance of peripheral blood T-helper 1 and 2 cytokine pattern in the evaluation of patients with mycosis fungoides and Sezary syndrome. Br J Dermatol 2003; 148: 709–718.

    CAS  PubMed  Google Scholar 

  71. Wysocka M, Zaki MH, French LE, Chehimi J, Shapiro M, Everetts SE et al. Sezary syndrome patients demonstrate a defect in dendritic cell populations: effects of CD40 ligand and treatment with GM-CSF on dendritic cell numbers and the production of cytokines. Blood 2002; 100: 3287–3294.

    CAS  PubMed  Google Scholar 

  72. Dobbeling U, Dummer R, Laine E, Potoczna N, Qin JZ, Burg G . Interleukin-15 is an autocrine/paracrine viability factor for cutaneous T-cell lymphoma cells. Blood 1998; 92: 252–258.

    CAS  PubMed  Google Scholar 

  73. Dalloul A, Laroche L, Bagot M, Mossalayi MD, Fourcade C, Thacker DJ et al. Interleukin-7 is a growth factor for Sezary lymphoma cells. J Clin Invest 1992; 90: 1054–1060.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Simonetta F, Chiali A, Cordier C, Urrutia A, Girault I, Bloquet S et al. Increased CD127 expression on activated FOXP3+CD4+ regulatory T cells. Eur J Immunol 2010; 40: 2528–2538.

    CAS  PubMed  Google Scholar 

  75. Du J, Huang C, Zhou B, Ziegler SF . Isoform-specific inhibition of ROR alpha-mediated transcriptional activation by human FOXP3. J Immunol 2008; 180: 4785–4792.

    CAS  PubMed  Google Scholar 

  76. Izban KF, Ergin M, Qin JZ, Martinez RL, Pooley RJ JR, Saeed S et al. Constitutive expression of NF-kappa B is a characteristic feature of mycosis fungoides: implications for apoptosis resistance and pathogenesis. Hum Pathol 2000; 31: 1482–1490.

    CAS  PubMed  Google Scholar 

  77. Sors A, Jean-Louis F, Pellet C, Laroche L, Dubertret L, Courtois G et al. Down-regulating constitutive activation of the NF-kappaB canonical pathway overcomes the resistance of cutaneous T-cell lymphoma to apoptosis. Blood 2006; 107: 2354–2363.

    CAS  PubMed  Google Scholar 

  78. Sors A, Jean-Louis F, Begue E, Parmentier L, Dubertret L, Dreano M et al. Inhibition of IkappaB kinase subunit 2 in cutaneous T-cell lymphoma down-regulates nuclear factor-kappaB constitutive activation, induces cell death, and potentiates the apoptotic response to antineoplastic chemotherapeutic agents. Clin Cancer Res 2008; 14: 901–911.

    CAS  PubMed  Google Scholar 

  79. Krejsgaard T, Vetter-Kauczok CS, Woetmann A, Kneitz H, Eriksen KW, Lovato P et al. Ectopic expression of B-lymphoid kinase in cutaneous T-cell lymphoma. Blood 2009; 113: 5896–5904.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Clark RA . Regulation gone wrong: a subset of Sezary patients have malignant regulatory T cells. J Invest Dermatol 2009; 129: 2747–2750.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Schlapbach C, Ochsenbein A, Kaelin U, Hassan AS, Hunger RE, Yawalkar N . High numbers of DC-SIGN+ dendritic cells in lesional skin of cutaneous T-cell lymphoma. J Am Acad Dermatol 2010; 62: 995–1004.

    PubMed  Google Scholar 

  82. Zhou L, Chong MM, Littman DR . Plasticity of CD4+ T-cell lineage differentiation. Immunity 2009; 30: 646–655.

    CAS  PubMed  Google Scholar 

  83. Hori S . Developmental plasticity of Foxp3+ regulatory T cells. Curr Opin Immunol 2010; 22: 575–582.

    CAS  PubMed  Google Scholar 

  84. Komatsu N, Mariotti-Ferrandiz ME, Wang Y, Malissen B, Waldmann H, Hori S . Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc Natl Acad Sci USA 2009; 106: 1903–1908.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Krejsgaard T, Ralfkiaer U, Clasen-Linde E, Eriksen KW, Kopp KL, Bonefeld CM et al. Malignant cutaneous T-cell lymphoma cells express IL-17 utilizing the Jak3/Stat3 signaling pathway. J Invest Dermatol 2011; 131: 1331–1338.

    CAS  PubMed  Google Scholar 

  86. Walsh PT, Benoit BM, Wysocka M, Dalton NM, Turka LA, Rook AH . A role for regulatory T cells in cutaneous T-cell lymphoma; induction of a CD4 + CD25 + Foxp3+ T-cell phenotype associated with HTLV-1 infection. J Invest Dermatol 2006; 126: 690–692.

    CAS  PubMed  Google Scholar 

  87. Woetmann A, Lovato P, Eriksen KW, Krejsgaard T, Labuda T, Zhang Q et al. Nonmalignant T cells stimulate growth of T-cell lymphoma cells in the presence of bacterial toxins. Blood 2007; 109: 3325–3332.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Talpur R, Bassett R, Duvic M . Prevalence and treatment of Staphylococcus aureus colonization in patients with mycosis fungoides and Sezary syndrome. Br J Dermatol 2008; 159: 105–112.

    CAS  PubMed  Google Scholar 

  89. Sommer VH, Clemmensen OJ, Nielsen O, Wasik M, Lovato P, Brender C et al. In vivo activation of STAT3 in cutaneous T-cell lymphoma. Evidence for an antiapoptotic function of STAT3. Leukemia 2004; 18: 1288–1295.

    CAS  PubMed  Google Scholar 

  90. Zhang Q, Nowak I, Vonderheid EC, Rook AH, Kadin ME, Nowell PC et al. Activation of Jak/STAT proteins involved in signal transduction pathway mediated by receptor for interleukin 2 in malignant T lymphocytes derived from cutaneous anaplastic large T-cell lymphoma and Sezary syndrome. Proc Natl Acad Sci USA 1996; 93: 9148–9153.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Krejsgaard T, Vetter-Kauczok CS, Woetmann A, Lovato P, Labuda T, Eriksen KW et al. Jak3- and JNK-dependent vascular endothelial growth factor expression in cutaneous T-cell lymphoma. Leukemia 2006; 20: 1759–1766.

    CAS  PubMed  Google Scholar 

  92. Yu H, Pardoll D, Jove R . STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009; 9: 798–809.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bagot M, Nikolova M, Schirm-Chabanette F, Wechsler J, Boumsell L, Bensussan A . Crosstalk between tumor T lymphocytes and reactive T lymphocytes in cutaneous T cell lymphomas. Ann NY Acad Sci 2001; 941: 31–38.

    CAS  PubMed  Google Scholar 

  94. Kadin ME, Cavaille-Coll MW, Gertz R, Massague J, Cheifetz S, George D . Loss of receptors for transforming growth factor beta in human T-cell malignancies. Proc Natl Acad Sci USA 1994; 91: 6002–6006.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. van DR, Dijkman R, Vermeer MH, Out-Luiting JJ, van der Raaij-Helmer EM, Willemze R et al. Aberrant expression of the tyrosine kinase receptor EphA4 and the transcription factor twist in Sezary syndrome identified by gene expression analysis. Cancer Res 2004; 64: 5578–5586.

    Google Scholar 

  96. Schiemann WP, Pfeifer WM, Levi E, Kadin ME, Lodish HF . A deletion in the gene for transforming growth factor beta type I receptor abolishes growth regulation by transforming growth factor beta in a cutaneous T-cell lymphoma. Blood 1999; 94: 2854–2861.

    CAS  PubMed  Google Scholar 

  97. Brender C, Nielsen M, Kaltoft K, Mikkelsen G, Zhang Q, Wasik M et al. STAT3-mediated constitutive expression of SOCS-3 in cutaneous T-cell lymphoma. Blood 2001; 97: 1056–1062.

    CAS  PubMed  Google Scholar 

  98. Brender C, Lovato P, Sommer VH, Woetmann A, Mathiesen AM, Geisler C et al. Constitutive SOCS-3 expression protects T-cell lymphoma against growth inhibition by IFNalpha. Leukemia 2005; 19: 209–213.

    CAS  PubMed  Google Scholar 

  99. Vowels BR, Cassin M, Vonderheid EC, Rook AH . Aberrant cytokine production by Sezary syndrome patients: cytokine secretion pattern resembles murine Th2 cells. J Invest Dermatol 1992; 99: 90–94.

    CAS  PubMed  Google Scholar 

  100. Rook AH, Wood GS, Yoo EK, Elenitsas R, Kao DM, Sherman ML et al. Interleukin-12 therapy of cutaneous T-cell lymphoma induces lesion regression and cytotoxic T-cell responses. Blood 1999; 94: 902–908.

    CAS  PubMed  Google Scholar 

  101. Duvic M, Sherman ML, Wood GS, Kuzel TM, Olsen E, Foss F et al. A phase II open-label study of recombinant human interleukin-12 in patients with stage IA, IB, or IIA mycosis fungoides. J Am Acad Dermatol 2006; 55: 807–813.

    PubMed  Google Scholar 

  102. Kantekure K, Yang Y, Raghunath P, Schaffer A, Woetmann A, Zhang Q et al. Expression patterns of the immunosuppressive proteins PD-1/CD279 and PD-L1/CD274 at different stages of cutaneous T-cell lymphoma (CTCL)/mycosis fungoides (MF). Am J Dermatopath. In press 2011.

  103. Ni X, Hazarika P, Zhang C, Talpur R, Duvic M . Fas ligand expression by neoplastic T lymphocytes mediates elimination of CD8+ cytotoxic T lymphocytes in mycosis fungoides: a potential mechanism of tumor immune escape? Clin Cancer Res 2001; 7: 2682–2692.

    CAS  PubMed  Google Scholar 

  104. Zoi-Toli O, Vermeer MH, de VE, Van BP, Meijer CJ, Willemze R . Expression of Fas and Fas-ligand in primary cutaneous T-cell lymphoma (CTCL): association between lack of Fas expression and aggressive types of CTCL. Br J Dermatol 2000; 143: 313–319.

    CAS  PubMed  Google Scholar 

  105. Yawalkar N, Ferenczi K, Jones DA, Yamanaka K, Suh KY, Sadat S et al. Profound loss of T-cell receptor repertoire complexity in cutaneous T-cell lymphoma. Blood 2003; 102: 4059–4066.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by research funding from the Carlsberg Foundation (Carlsbergfondet), the Danish Research Councils, the Danish Cancer Society, the Lundbeck Foundation, the Novo Nordic Foundation, Fabrikant Vilhelm Pedersen og Hustrus Mindelegat, the Neye Foundation, the University of Copenhagen and the National Cancer Institute Grant (CA89194) (MAW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Krejsgaard.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krejsgaard, T., Odum, N., Geisler, C. et al. Regulatory T cells and immunodeficiency in mycosis fungoides and Sézary syndrome. Leukemia 26, 424–432 (2012). https://doi.org/10.1038/leu.2011.237

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.237

Keywords

This article is cited by

Search

Quick links