Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Minimal Residual Disease

Inhibition of CXCR4 in CML cells disrupts their interaction with the bone marrow microenvironment and sensitizes them to nilotinib

Abstract

Drug resistance is a growing area of concern. It has been shown that a small, residual pool of leukemic CD34+ progenitor cells can survive in the marrow microenvironment of chronic myeloid leukemia (CML) patients after years of kinase inhibitor treatment. Bone marrow (BM) stroma has been implicated in the long-term survival of leukemic cells, and contributes to the expansion and proliferation of both transformed and normal hematopoietic cells. Mechanistically, we found that CML cells expressed CXCR4, and that plerixafor diminished BCR–ABL-positive cell migration and reduced adhesion of these cells to extra cellular-matrix components and to BM stromal cells in vitro. Moreover, plerixafor decreased the drug resistance of CML cells induced by co-culture with BM stromal cells in vitro. Using a functional mouse model of progressive and residual disease, we demonstrated the ability of the CXCR4 inhibitor, plerixafor, to mobilize leukemic cells in vivo, such that a plerixafor–nilotinib combination reduced the leukemia burden in mice significantly below the baseline level suppression exhibited by a moderate-to-high dose of nilotinib as single agent. These results support the idea of using CXCR4 inhibition in conjunction with targeted tyrosine kinase inhibition to override drug resistance in CML and suppress or eradicate residual disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Mahon FX, Rea D, Guilhot J, Guilhot F, Huguet F, Nicolini F et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 yeras: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 2010; 11: 1029–1035.

    Article  CAS  PubMed  Google Scholar 

  2. Chomel J-C, Bonnet M-L, Sorel N, Bertrand A, Meunier M-C, Fichelson S et al. Leukemic stem cell persistence in chronic myeloid leukemia patients with sustained undetectable molecular residual disease. Blood 2011; 118: 3657–3660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Konig H, Holtz M, Modi H, Manley P, Holyoake TL, Forman SJ et al. Enhanced BCR-ABL kinase inhibition does not result in increased inhibition of downstream signaling pathways or increased growth suppression in CML progenitors. Leukemia 2008; 22: 748–755.

    Article  CAS  PubMed  Google Scholar 

  4. Kumagai M, Manabe A, Pui CH, Behm FG, Raimondi SC, Hancock ML et al. Stroma-supported culture in childhood B-lineage acute lymphoblastic leukemia cells predicts treatment outcome. J Clin Invest 1996; 97: 755–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ashley DM, Bol SJ, Kannourakis G . Human bone marrow stromal cell contact and soluble factors have different effects on the survival and proliferation of paediatric B-lineage acute lymphoblastic leukaemic blasts. Leuk Res 1994; 18: 337–346.

    Article  CAS  PubMed  Google Scholar 

  6. Bradstock K, Bianchi A, Makrynikola V, Filshie R, Gottlieb D . Long-term survival and proliferation of precursor B acute lymphoblastic leukemia cells on human bone marrow stroma. Leukemia 1996; 10: 813–820.

    CAS  PubMed  Google Scholar 

  7. Rafii S, Mohle R, Shapiro F, Frey BM, Moore MA . Regulation of hematopoiesis by microvascular endothelium. Leuk Lymphoma 1997; 27: 375–386.

    Article  CAS  PubMed  Google Scholar 

  8. Lagneaux L, Delforge A, Bron D, De Bruyn C, Stryckmans P . Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood 1998; 91: 2387–2396.

    CAS  PubMed  Google Scholar 

  9. Lagneaux L, Delforge A, De Bruyn C, Bernier M, Bron D . Adhesion to bone marrow stroma inhibits apoptosis of chronic lymphocytic leukemia cells. Leukemia Lymphoma 1999; 35: 445–453.

    Article  CAS  PubMed  Google Scholar 

  10. Konopleva M, Konoplev S, Hu W, Zaritskey AY, Afanasiev BV, Andreeff M . Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia 2002; 16: 1713–1724.

    Article  CAS  PubMed  Google Scholar 

  11. Litwin C, Leong KG, Zapf R, Sutherland H, Naiman SC, Karsan A . Role of the microenvironment in promoting angiogenesis in acute myeloid leukemia. Am J Hematol 2002; 70: 22–30.

    Article  PubMed  Google Scholar 

  12. Azab AK, Runnels JM, Pitsillides C, Moreau AS, Azab F, Leleu X et al. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 2009; 113: 4341–4351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Azab AK, Azab F, Blotta S, Pitsillides CM, Thompson B, Runnels JM et al. RhoA and Rac1 GTPases play major and differential roles in stromal cell-derived factor-1-induced cell adhesion and chemotaxis in multiple myeloma. Blood 2009; 114: 619–629, (IF=10.5).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Azab AK, Azab F, Maiso P, Quang P, Roccaro AM, Sacco A et al. FGFR3 is overexpressed in Waldenström macroglobulinemia and its inhibition by Dovitinib induces apoptosis, and overcomes stroma-induced proliferation. Clin Cancer Res 2011; 17: 4389–4399.

    Article  CAS  PubMed  Google Scholar 

  15. Azab F, Azab AK, Maiso P, Calimeri T, Flores LM, Liu Y et al. Eph-B2/ephrin-B2 interaction plays a major role in the adhesion and proliferation of Waldenstrom's Macroglobulinemia. Clin Cancer Res 2011; e-pub ahead of print 18 October 2011.

  16. Azab AK, Quang P, Azab F, Pitsillides C, Tompson B, Chonghaile T et al. P-selectin glycoprotein ligand regulates the interaction of multiple myeloma cells with the bone marrow microenvironment. Blood 2011; e-pub ahead of print 16 November 2011.

  17. Verfaillie CM . Soluble factor(s) produced by human bone marrow stroma increase cytokine-induced proliferation and maturation of primitive hematopoietic progenitors while preventing their terminal differentiation. Blood 1993; 82: 2045–2053.

    CAS  PubMed  Google Scholar 

  18. Liesveld JL, Harbol AW, Abboud CN . Stem cell factor and stromal cell co-culture prevent apoptosis in a subculture of the megakaryoblastic cell line, UT-7. Leuk Res 1996; 20: 591–600.

    Article  CAS  PubMed  Google Scholar 

  19. Harrison PR, Nibbs RJ, Bartholomew C, O’Prey J, Qiu J, Walker M et al. Molecular mechanisms involved in long-term maintenance of erythroleukaemia cells by stromal cells. Leukemia 1997; 11: 474–477.

    PubMed  Google Scholar 

  20. Breems DA, Blokland EA, Ploemacher RE . Stroma-conditioned media improve expansion of human primitive hematopoietic stem cells and progenitor cells. Leukemia 1997; 11: 42–50.

    Article  Google Scholar 

  21. O’Prey J, Leslie N, Itoh K, Ostertag W, Bartholomew C, Harrison PR . Both stroma and stem cell factor maintain long-term growth of ELM erythroleukemia cells, but only stroma prevents erythroid differentiation in response to erythropoietin and interleukin-3. Blood 1998; 91: 1548–1555.

    PubMed  Google Scholar 

  22. Leslie NR, O’Prey J, Bartholomew C, Harrison PR . An activating mutation in the kit receptor abolishes the stroma requirement for growth of ELM erythroleukemia cells, but does not prevent their differentiation in response to erythropoietin. Blood 1998; 92: 4798–4807.

    CAS  PubMed  Google Scholar 

  23. Shih CC, Hu MC, Hu J, Medeiros J, Forman SJ . Long-term ex vivo maintenance and expansion of transplantable human hematopoietic stem cells. Blood 1999; 94: 623–636.

    Google Scholar 

  24. Shaked Y, Cervi D, Neuman M, Chen L, Klement G, Michaud CR et al. The splenic microenvironment is a source of proangiogenesis/inflammatory mediators accelerating the expansion of murine erythroleukemic cells. Blood 2005; 105: 4500–4507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Despars G, O’Neill HC . Splenic endothelial cell lines support development of dendritic cells from bone marrow. Stem Cells 2006; 24: 1496–1504.

    Article  CAS  PubMed  Google Scholar 

  26. Weisberg E, Wright RD, McMillin DW, Mitsiades C, Ray A, Barrett R et al. Stromal-mediated protection of tyrosine kinase inhibitor-treated BCR-ABL-expressing leukemia cells. Mol Cancer Ther 2008; 7: 1121–1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jin L, Tabe Y, Konoplev S, Xu Y, Levsath CE, Lu H et al. CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells. Mol Cancer Ther 2008; 7: 48–58.

    Article  CAS  PubMed  Google Scholar 

  28. Geay JF, Buet D, Zhang Y, Foudi A, Jarrier P, Berthebaud M et al. p210BCR-ABL inhibits SDF-1 chemotactic response via alteration of CXCR4 signaling and down-regulation of CXCR4 expression. Cancer Res 2005; 65: 2676–2683.

    Article  CAS  PubMed  Google Scholar 

  29. Dillmann F, Veldwijk MR, Laufs S, Sperandio M, Calandra G, Wenz F et al. Plerixafor inhibits chemotaxis toward SDF-1 and CXCR4-mediated stroma contact in a dose-dependent manner resulting in increased susceptibility of BCR-ABL+ cell to Imatinib and Nilotinib. Leuk Lymphoma 2009; 50: 1676–1686.

    Article  CAS  PubMed  Google Scholar 

  30. Zeng Z, Samudio IJ, Munsell M, An J, Huang Z, Estey E et al. Inhibition of CXCR4 with the novel RCP168 peptide overcomes stroma-mediated chemoresistance in chronic and acute leukemias. Mol Cancer Ther 2006; 5: 3113–3121.

    Article  CAS  PubMed  Google Scholar 

  31. Kalatskaya I, Berchiche Y, Gravel S, Limberg B, Rosenbaum J, Heveker N . AMD3100 is a CXCR7 ligand with allosteric agonist properties. Molecular Pharmocology 2009; 75: 1240–1247.

    Article  CAS  Google Scholar 

  32. Nervi B, Ramirez P, Rettig MP, Uy GL, Holt MS, Ritchey JK et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 2009; 113: 6206–6214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM et al. Mechanisms of regulation of CXCR4/SDF1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood 2007; 109: 2708–2717.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Matulonis U, Salgia R, Okuda K, Druker B, Griffin JD . IL-3 and p210 BCR-ABL activate both unique and overlapping pathways of signal transduction in a factor-dependent myeloid cell line. Exp Hematol 1993; 21: 1460–1466.

    CAS  PubMed  Google Scholar 

  35. Weisberg E, Manley PW, Breitenstein W, Brüggen J, Cowan-Jacob SW, Ray A et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 2005; 7: 129–141.

    Article  CAS  PubMed  Google Scholar 

  36. Armstrong SA, Kung AL, Mabon ME, Silverman LB, Stam RW, Den Boer ML et al. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell 2003; 3: 173–183.

    Article  CAS  PubMed  Google Scholar 

  37. Jacobi A, Thieme S, Lehmann R, Ugarte F, Malech HL, Koch S et al. Impact of CXCR4 inhibition on FLT3-ITD-positive human AML blasts. Exp Hematol 2010; 38: 180–190.

    Article  CAS  PubMed  Google Scholar 

  38. Liesveld JL, Bechelli J, Rosell K, Lu C, Bridger G, Phillips II G et al. Effects of AMD3100 on transmigration and survival of acute myelogenous leukemia cells. Leuk Res 2007; 31: 1553–1563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vianello F, Villanova F, Tisato V, Lymperi S, Ho K-K, Gomes AR et al. Bone marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib-induced apoptosis via the CXCR4/CXCL12 axis. Haematologica 2010; 95: 1081–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Weisberg E, Ray A, Barrett R, Nelson E, Christie AL, Porter D et al. Smac mimetics: implications for enhancement of targeted therapies in leukemia. Leukemia 2010; 24: 2100–2109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Agarwal A, Fleischman AG, Petersen CL, Loriaux MM, Woltjer R, Druker BJ et al. Effects of Plerixafor (AMD3100) in Combination with Tyrosine Kinase Inhibition in a Murine Mouse Model of CML. Abstract #3389. 52nd ASH Annual Meeting and Exposition. Dec 4-7, 2010.

  42. Burrell K . Role of bone marrow derived cells in response to ionizing radiation in normal brain. Abstract #566. AACR 2011.

Download references

Acknowledgements

JDG is supported by NIH grant CA66996. JDG has a financial interest with Novartis Pharma AG. JDG and ALK have a financial interest with Novartis Pharma AG. PWM is an employee of Novartis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I M Ghobrial or J D Griffin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisberg, E., Azab, A., Manley, P. et al. Inhibition of CXCR4 in CML cells disrupts their interaction with the bone marrow microenvironment and sensitizes them to nilotinib. Leukemia 26, 985–990 (2012). https://doi.org/10.1038/leu.2011.360

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.360

Keywords

This article is cited by

Search

Quick links