Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

The CD49d/CD29 complex is physically and functionally associated with CD38 in B-cell chronic lymphocytic leukemia cells

Abstract

CD49d and CD38 are independent negative prognostic markers in chronic lymphocytic leukemia (CLL). Their associated expression marks a disease subset with a highly aggressive clinical course. Here, we demonstrate a constitutive physical association between the CD49d/CD29 integrin complex and CD38 in primary CLL cells and B-cell lines by (i) cocapping, (ii) coimmunoprecipitation and (iii) cell adhesion experiments using CD49d-specific substrates (vascular-cell adhesion molecule-1 or CS-1/H89 fibronectin fragments). The role of CD38 in CD49d-mediated cell adhesion was studied in CD49d+CD38+ and CD49d+CD38 primary CLL cells, and confirmed using CD38 transfectants of the originally CD49d+CD38 CLL-derived cell line Mec-1. Results indicate that CD49d+CD38+ cells adhered more efficiently onto CD49d-specific substrates than CD49d+CD38 cells (P<0.001). Upon adhesion, CD49d+CD38+ cells underwent distinctive changes in cell shape and morphology, with higher levels of phosphorylated Vav-1 than CD49d+CD38 cells (P=0.0006) and a more complex distribution of F-actin to the adhesion sites. Lastly, adherent CD49d+CD38+ cells were more resistant to serum-deprivation-induced (P<0.001) and spontaneous (P=0.03) apoptosis than the CD49d+CD38 counterpart. Altogether, our results point to a direct role for CD38 in enhancing CD49d-mediated adhesion processes in CLL, thus providing an explanation for the negative clinical impact exerted by these molecules when coexpressed in neoplastic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Caligaris-Cappio F . Role of the microenvironment in chronic lymphocytic leukaemia. Br J Haematol 2003; 123: 380–388.

    Article  PubMed  Google Scholar 

  2. Scielzo C, Ten HE, Bertilaccio MT, Muzio M, Calissano C, Ghia P et al. How the microenvironment shapes chronic lymphocytic leukemia: the cytoskeleton connection. Leuk Lymphoma 2010; 51: 1371–1374.

    Article  PubMed  Google Scholar 

  3. Deaglio S, Vaisitti T, Bergui L, Bonello L, Horenstein AL, Tamagnone L et al. CD38 and CD100 lead a network of surface receptors relaying positive signals for B-CLL growth and survival. Blood 2005; 105: 3042–3050.

    Article  CAS  PubMed  Google Scholar 

  4. Deaglio S, Vaisitti T, Zucchetto A, Gattei V, Malavasi F . CD38 as a molecular compass guiding topographical decisions of chronic lymphocytic leukemia cells. Semin Cancer Biol 2010; 20: 416–423.

    Article  CAS  PubMed  Google Scholar 

  5. Zucchetto A, Benedetti D, Tripodo C, Bomben R, Dal BM, Marconi D et al. CD38/CD31, the CCL3 and CCL4 chemokines, and CD49d/vascular cell adhesion molecule-1 are interchained by sequential events sustaining chronic lymphocytic leukemia cell survival. Cancer Res 2009; 69: 4001–4009.

    Article  CAS  PubMed  Google Scholar 

  6. Gattei V, Bulian P, Del Principe MI, Zucchetto A, Maurillo L, Buccisano F et al. Relevance of CD49d protein expression as overall survival and progressive disease prognosticator in chronic lymphocytic leukemia. Blood 2008; 111: 865–873.

    Article  CAS  PubMed  Google Scholar 

  7. Rossi D, Zucchetto A, Rossi FM, Capello D, Cerri M, Deambrogi C et al. CD49d expression is an independent risk factor of progressive disease in early stage chronic lymphocytic leukemia. Haematologica 2008; 93: 1575–1579.

    Article  CAS  PubMed  Google Scholar 

  8. Shanafelt TD, Geyer SM, Bone ND, Tschumper RC, Witzig TE, Nowakowski GS et al. CD49d expression is an independent predictor of overall survival in patients with chronic lymphocytic leukaemia: a prognostic parameter with therapeutic potential. Br J Haematol 2008; 140: 537–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94: 1840–1847.

    CAS  PubMed  Google Scholar 

  10. Del Poeta G, Maurillo L, Venditti A, Buccisano F, Epiceno AM, Capelli G et al. Clinical significance of CD38 expression in chronic lymphocytic leukemia. Blood 2001; 98: 2633–2639.

    Article  CAS  PubMed  Google Scholar 

  11. de la Fuente MT, Casanova B, Moyano JV, Garcia-Gila M, Sanz L, Garcia-Marco J et al. Engagement of {alpha}4{beta}1 integrin by fibronectin induces in vitro resistance of B chronic lymphocytic leukemia cells to fludarabine. J Leukoc Biol 2002; 71: 495–502.

    CAS  PubMed  Google Scholar 

  12. Eksioglu-Demiralp E, Alpdogan O, Aktan M, Firatli T, Ozturk A, Budak T et al. Variable expression of CD49d antigen in B cell chronic lymphocytic leukemia is related to disease stages. Leukemia 1996; 10: 1331–1339.

    CAS  PubMed  Google Scholar 

  13. Ruoslahti E . Integrins. J Clin Invest 1991; 87: 1–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Verdone G, Doliana R, Corazza A, Colebrooke SA, Spessotto P, Bot S et al. The solution structure of EMILIN1 globular C1q domain reveals a disordered insertion necessary for interaction with the alpha4beta1 integrin 2. J Biol Chem 2008; 283: 18947–18956.

    Article  CAS  PubMed  Google Scholar 

  15. Rose DM, Han J, Ginsberg MH . Alpha4 integrins and the immune response. Immunol Rev 2002; 186: 118–124.

    Article  CAS  PubMed  Google Scholar 

  16. Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev 2008; 88: 841–886.

    Article  CAS  PubMed  Google Scholar 

  17. Deaglio S, Mallone R, Baj G, Arnulfo A, Surico N, Dianzani U et al. CD38/CD31, a receptor/ligand system ruling adhesion and signaling in human leukocytes. Chem Immunol 2000; 75: 99–120.

    Article  CAS  PubMed  Google Scholar 

  18. Deaglio S, Morra M, Mallone R, Ausiello CM, Prager E, Garbarino G et al. Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member. J Immunol 1998; 160: 395–402.

    CAS  PubMed  Google Scholar 

  19. Frasca L, Fedele G, Deaglio S, Capuano C, Palazzo R, Vaisitti T et al. CD38 orchestrates migration, survival, and Th1 immune response of human mature dendritic cells. Blood 2006; 107: 2392–2399.

    Article  CAS  PubMed  Google Scholar 

  20. Zubiaur M, Fernandez O, Ferrero E, Salmeron J, Malissen B, Malavasi F et al. CD38 is associated with lipid rafts and upon receptor stimulation leads to Akt/protein kinase B and Erk activation in the absence of the CD3-zeta immune receptor tyrosine-based activation motifs. J Biol Chem 2002; 277: 13–22.

    Article  CAS  PubMed  Google Scholar 

  21. Morra M, Zubiaur M, Terhorst C, Sancho J, Malavasi F . CD38 is functionally dependent on the TCR/CD3 complex in human T cells. FASEB J 1998; 12: 581–592.

    Article  CAS  PubMed  Google Scholar 

  22. Deaglio S, Vaisitti T, Billington R, Bergui L, Omede P, Genazzani AA et al. CD38/CD19: a lipid raft-dependent signaling complex in human B cells. Blood 2007; 109: 5390–5398.

    Article  CAS  PubMed  Google Scholar 

  23. Deaglio S, Zubiaur M, Gregorini A, Bottarel F, Ausiello CM, Dianzani U et al. Human CD38 and CD16 are functionally dependent and physically associated in natural killer cells. Blood 2002; 99: 2490–2498.

    Article  CAS  PubMed  Google Scholar 

  24. Zilber MT, Setterblad N, Vasselon T, Doliger C, Charron D, Mooney N et al. MHC class II/CD38/CD9: a lipid-raft-dependent signaling complex in human monocytes. Blood 2005; 106: 3074–3081.

    Article  CAS  PubMed  Google Scholar 

  25. Deaglio S, Vaisitti T, Aydin S, Ferrero E, Malavasi F . In-tandem insight from basic science combined with clinical research: CD38 as both marker and key component of the pathogenetic network underlying chronic lymphocytic leukemia. Blood 2006; 108: 1135–1144.

    Article  CAS  PubMed  Google Scholar 

  26. Vaisitti T, Aydin S, Rossi D, Cottino F, Bergui L, D’Arena G et al. CD38 increases CXCL12-mediated signals and homing of chronic lymphocytic leukemia cells. Leukemia 2010; 24: 958–969.

    Article  CAS  PubMed  Google Scholar 

  27. Berditchevski F . Complexes of tetraspanins with integrins: more than meets the eye. J Cell Sci 2001; 114: 4143–4151.

    CAS  PubMed  Google Scholar 

  28. Buggins AG, Levi A, Gohil S, Fishlock K, Patten PE, Calle Y et al. Evidence for a macromolecular complex in poor prognosis CLL that contains CD38, CD49d, CD44 and MMP-9. Br J Haematol 2011; 154: 216–222.

    Article  CAS  PubMed  Google Scholar 

  29. Matutes E, Owusu-Ankomah K, Morilla R, Garcia MJ, Houlihan A, Que TH et al. The immunological profile of B-cell disorders and proposal of a scoring system for the diagnosis of CLL. Leukemia 1994; 8: 1640–1645.

    CAS  PubMed  Google Scholar 

  30. Bomben R, Dal Bo M, Capello D, Benedetti D, Marconi D, Zucchetto A et al. Comprehensive characterization of IGHV3-21-expressing B-cell chronic lymphocytic leukemia: an Italian multicenter study. Blood 2007; 109: 2989–2998.

    CAS  PubMed  Google Scholar 

  31. Zucchetto A, Sonego P, Degan M, Bomben R, Dal Bo M, Russo S et al. Signature of B-CLL with different prognosis by Shrunken centroids of surface antigen expression profiling. J Cell Physiol 2005; 204: 113–123.

    Article  CAS  PubMed  Google Scholar 

  32. Zucchetto A, Bomben R, Dal Bo M, Bulian P, Benedetti D, Nanni P et al. CD49d in B-cell chronic lymphocytic leukemia: correlated expression with CD38 and prognostic relevance. Leukemia 2006; 20: 523–525.

    Article  CAS  PubMed  Google Scholar 

  33. Deaglio S, Capobianco A, Bergui L, Durig J, Morabito F, Duhrsen U et al. CD38 is a signaling molecule in B-cell chronic lymphocytic leukemia cells. Blood 2003; 102: 2146–2155.

    Article  CAS  PubMed  Google Scholar 

  34. Bustelo XR . Vav proteins, adaptors and cell signaling. Oncogene 2001; 20: 6372–6381.

    Article  CAS  PubMed  Google Scholar 

  35. Nobes CD, Hall A . Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 1995; 81: 53–62.

    Article  CAS  PubMed  Google Scholar 

  36. Koopman G, Keehnen RM, Lindhout E, Newman W, Shimizu Y, van Seventer GA et al. Adhesion through the LFA-1 (CD11a/CD18)-ICAM-1 (CD54) and the VLA-4 (CD49d)-VCAM-1 (CD106) pathways prevents apoptosis of germinal center B cells. J Immunol 1994; 152: 3760–3767.

    CAS  PubMed  Google Scholar 

  37. Nuckel H, Switala M, Collins CH, Sellmann L, Grosse-Wilde H, Duhrsen U et al. High CD49d protein and mRNA expression predicts poor outcome in chronic lymphocytic leukemia. Clin Immunol 2009; 131: 472–480.

    Article  PubMed  Google Scholar 

  38. Buggins AG, Pepper C, Patten PE, Hewamana S, Gohil S, Moorhead J et al. Interaction with vascular endothelium enhances survival in primary chronic lymphocytic leukemia cells via NF-kappaB activation and de novo gene transcription. Cancer Res 2010; 70: 7523–7533.

    Article  CAS  PubMed  Google Scholar 

  39. Jacobson K, Mouritsen OG, Anderson RG . Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 2007; 9: 7–14.

    Article  CAS  PubMed  Google Scholar 

  40. Hemler ME . Integrin associated proteins. Curr Opin Cell Biol 1998; 10: 578–585.

    Article  CAS  PubMed  Google Scholar 

  41. Takagi J, Petre BM, Walz T, Springer TA . Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 2002; 110: 599–611.

    Article  CAS  PubMed  Google Scholar 

  42. Feigelson SW, Grabovsky V, Shamri R, Levy S, Alon R . The CD81 tetraspanin facilitates instantaneous leukocyte VLA-4 adhesion strengthening to vascular cell adhesion molecule 1 (VCAM-1) under shear flow. J Biol Chem 2003; 278: 51203–51212.

    Article  CAS  PubMed  Google Scholar 

  43. Bertagnolo V, Brugnoli F, Mischiati C, Sereni A, Bavelloni A, Carini C et al. Vav promotes differentiation of human tumoral myeloid precursors. Exp Cell Res 2005; 306: 56–63.

    Article  CAS  PubMed  Google Scholar 

  44. Deaglio S, Vaisitti T, Aydin S, Bergui L, D’Arena G, Bonello L et al. CD38 and ZAP-70 are functionally linked and mark CLL cells with high migratory potential. Blood 2007; 110: 4012–4021.

    Article  CAS  PubMed  Google Scholar 

  45. Congleton J, Jiang H, Malavasi F, Lin H, Yen A . ATRA-induced HL-60 myeloid leukemia cell differentiation depends on the CD38 cytosolic tail needed for membrane localization, but CD38 enzymatic activity is unnecessary. Exp Cell Res 2010; 317: 910–919.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ferrarini M, Chiorazzi N . Recent advances in the molecular biology and immunobiology of chronic lymphocytic leukemia. Semin Hematol 2004; 41: 207–223.

    Article  CAS  PubMed  Google Scholar 

  47. Till KJ, Lin K, Zuzel M, Cawley JC . The chemokine receptor CCR7 and alpha4 integrin are important for migration of chronic lymphocytic leukemia cells into lymph nodes. Blood 2002; 99: 2977–2984.

    Article  CAS  PubMed  Google Scholar 

  48. Vigorito E, Gambardella L, Colucci F, McAdam S, Turner M . Vav proteins regulate peripheral B-cell survival. Blood 2005; 106: 2391–2398.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is supported in part by: the Ministero della Salute (Ricerca Finalizzata IRCCS, ‘Alleanza Contro il Cancro’, Rete Nazionale Bio-Informatica Oncologica/RN-BIO and ‘Giovani Ricercatori’ project, grant GR-2008-1138053), Rome, Italy; the Ministero dell’Istruzione (Bando FIRB Giovani 2008, grant # RBFR08ATLH and Bando PRIN 2009, LMEEEH_002), Rome, Italy; the Associazione Italiana contro le Leucemie, linfomi e mielomi (AIL), Venezia Section, Pramaggiore (VE) Group; the Associazione Italiana Ricerca Cancro (AIRC, Investigator Grant IG-8701 and IG-8590; MFAG 10327; Special Program Molecular Clinical Oncology, 5 × 1000, N. 10007 and N. 9980, 2010/15), the Milan, Italy; ‘5 × 1000 program’ of the Centro di Riferimento Oncologico, Aviano, Italy; Ricerca Scientifica Applicata, Regione Friuli Venezia Giulia, (‘Linfonet’ Project), Trieste, Italy and the Human Genetics Foundation, Turin, Italy. The Fondazione Internazionale di Ricerca in Medicina Sperimentale (Turin, Italy) provided valuable administrative assistance. We thank Drs Francesca Cottino and Katiuscia Gizzi for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Gattei.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zucchetto, A., Vaisitti, T., Benedetti, D. et al. The CD49d/CD29 complex is physically and functionally associated with CD38 in B-cell chronic lymphocytic leukemia cells. Leukemia 26, 1301–1312 (2012). https://doi.org/10.1038/leu.2011.369

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.369

Keywords

This article is cited by

Search

Quick links