Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

High activity of sorafenib in FLT3-ITD-positive acute myeloid leukemia synergizes with allo-immune effects to induce sustained responses

Abstract

Preliminary evidence suggests that the multikinase inhibitor sorafenib has clinical activity in FLT3-ITD-positive (FLT3-ITD) acute myeloid leukemia (AML). However, the quality and sustainability of achievable remissions and clinical variables that influence the outcome of sorafenib monotherapy are largely undefined. To address these questions, we evaluated sorafenib monotherapy in 65 FLT3-ITD AML patients treated at 23 centers. All but two patients had relapsed or were chemotherapy-refractory after a median of three prior chemotherapy cycles. Twenty-nine patients (45%) had undergone prior allogeneic stem cell transplantation (allo-SCT). The documented best responses were: hematological remission in 24 patients (37%), bone marrow remission in 5 patients (8%), complete remission (with and without normalization of peripheral blood counts) in 15 patients (23%) and molecular remission with undetectable FLT3-ITD mRNA in 10 patients (15%), respectively. Seventeen of the patients without prior allo-SCT (47%) developed sorafenib resistance after a median treatment duration of 136 days (range, 56–270 days). In contrast, allo-SCT patients developed sorafenib resistance less frequently (38%) and significantly later (197 days, range 38–225 days; P=0.03). Sustained remissions were seen exclusively in the allo-SCT cohort. Thus, sorafenib monotherapy has significant activity in FLT3-ITD AML and may synergize with allogeneic immune effects to induce durable remissions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2009; 115: 453–474.

    Article  Google Scholar 

  2. Kindler T, Lipka DB, Fischer T . FLT3 as a therapeutic target in AML: still challenging after all these years. Blood 2010; 116: 5089–5102.

    Article  CAS  Google Scholar 

  3. Frohling S, Schlenk RF, Breitruck J, Benner A, Kreitmeier S, Tobis K et al. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood 2002; 100: 4372–4380.

    Article  CAS  Google Scholar 

  4. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98: 1752–1759.

    Article  CAS  Google Scholar 

  5. Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99: 4326–4335.

    Article  CAS  Google Scholar 

  6. Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG . FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood 2002; 99: 310–318.

    Article  CAS  Google Scholar 

  7. Grundler R, Miething C, Thiede C, Peschel C, Duyster J . FLT3-ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model. Blood 2005; 105: 4792–4799.

    Article  CAS  Google Scholar 

  8. Stone RM, DeAngelo DJ, Klimek V, Galinsky I, Estey E, Nimer SD et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 2005; 105: 54–60.

    Article  CAS  Google Scholar 

  9. Knapper S, Burnett AK, Littlewood T, Kell WJ, Agrawal S, Chopra R et al. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood 2006; 108: 3262–3270.

    Article  CAS  Google Scholar 

  10. Smith BD, Levis M, Beran M, Giles F, Kantarjian H, Berg K et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 2004; 103: 3669–3676.

    Article  CAS  Google Scholar 

  11. Zhang W, Konopleva M, Shi YX, McQueen T, Harris D, Ling X et al. Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst 2008; 100: 184–198.

    Article  CAS  Google Scholar 

  12. Pratz KW, Cho E, Levis MJ, Karp JE, Gore SD, McDevitt M et al. A pharmacodynamic study of sorafenib in patients with relapsed and refractory acute leukemias. Leukemia 2010; 24: 1437–1444.

    Article  CAS  Google Scholar 

  13. Crump M, Hedley D, Kamel-Reid S, Leber B, Wells R, Brandwein J et al. A randomized phase I clinical and biologic study of two schedules of sorafenib in patients with myelodysplastic syndrome or acute myeloid leukemia: a NCIC (National Cancer Institute of Canada) Clinical Trials Group Study. Leuk Lymphoma 2010; 51: 252–260.

    Article  CAS  Google Scholar 

  14. Borthakur G, Kantarjian H, Ravandi F, Zhang W, Konopleva M, Wright JJ et al. Phase I study of sorafenib in patients with refractory or relapsed acute leukemias. Haematologica 2010; 96: 62–68.

    Article  Google Scholar 

  15. Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M . Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 2008; 7: 3129–3140.

    Article  CAS  Google Scholar 

  16. Scholl S, Spies-Weisshart B, Klink A, Muegge LO, Fricke HJ, Hochhaus A . Secondary resistance to sorafenib in two patients with acute myeloid leukemia (AML) harboring FLT3-ITD mutations. Ann Hematol 2011; 90: 473–475.

    Article  Google Scholar 

  17. Metzelder S, Wang Y, Wollmer E, Wanzel M, Teichler S, Chaturvedi A et al. Compassionate use of sorafenib in FLT3-ITD-positive acute myeloid leukemia: sustained regression before and after allogeneic stem cell transplantation. Blood 2009; 113: 6567–6571.

    Article  CAS  Google Scholar 

  18. Metzelder SK, Wollmer E, Neubauer A, Burchert A . Sorafenib in relapsed and refractory FLT3-ITD positive acute myeloid leukemia: a novel treatment option. Dtsch Med Wochenschr 2010; 135: 1852–1856.

    Article  CAS  Google Scholar 

  19. Safaian NN, Czibere A, Bruns I, Fenk R, Reinecke P, Dienst A et al. Sorafenib (Nexavar((R))) induces molecular remission and regression of extramedullary disease in a patient with FLT3-ITD(+) acute myeloid leukemia. Leuk Res 2009; 33: 348–350.

    Article  CAS  Google Scholar 

  20. Lee SH, Paietta E, Racevskis J, Wiernik PH . Complete resolution of leukemia cutis with sorafenib in an acute myeloid leukemia patient with FLT3-ITD mutation. Am J Hematol 2009; 84: 701–702.

    Article  Google Scholar 

  21. Schroeder T, Zohren F, Saure C, Bruns I, Czibere A, Safaian NN et al. Sorafenib treatment in 13 patients with acute myeloid leukemia and activating FLT3 mutations in combination with chemotherapy or as monotherapy. Acta Haematol 2010; 124: 153–159.

    Article  Google Scholar 

  22. Mori M, Sprague J . The successful remission induction by sorafenib and long-term complete remission in a FLT3-ITD-positive patient with a refractory acute erythroid leukemia and abnormal cytogenetics. Leuk Res 2011; 36: e1–e3.

    Article  Google Scholar 

  23. Mohan BP, How GF, Loh Y, Linn YC . Sorafenib monotherapy gives sustainable suppression of FLT3 clone in untreated patients with FLT3-internal tandem duplication positive acute myeloid Leukaemia. Br J Haematol 2012; 157: 131–132.

    Article  CAS  Google Scholar 

  24. Cheson BD, Bennett JM, Kopecky KJ, Buchner T, Willman CL, Estey EH et al. Revised recommendations of the International Working Group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol 2003; 21: 4642–4649.

    Article  Google Scholar 

  25. Rollig C, Brandts C, Shaid S, Hentrich M, Kramer A, Junghanss C et al. Survey and analysis of the efficacy and prescription pattern of sorafenib in patients with acute myeloid leukemia. Leuk Lymphoma 2011; e-pub ahead of print 7 December 2011; doi:10.3109/10428194.2011.637210.

    Article  Google Scholar 

  26. Fischer T, Stone RM, Deangelo DJ, Galinsky I, Estey E, Lanza C et al. Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol 2010; 28: 4339–4345.

    Article  CAS  Google Scholar 

  27. Cortes JE, Perl AE, Smith CC, Kovacsovics T, Dombret H, Dohner H et al. A phase II open-label, Ac220 monotherapy efficacy study in patients with refractory/relapsed Flt3-Itd positive acute myeloid leukemia: updated interim results. ASH Annu Meet Abstr 2011; 118: 2576.

    Google Scholar 

  28. Ravandi F, Cortes JE, Jones D, Faderl S, Garcia-Manero G, Konopleva MY et al. Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia. J Clin Oncol 2010; 28: 1856–1862.

    Article  CAS  Google Scholar 

  29. Serve H, Wagner R, Sauerland C, Brunnberg U, Krug U, Schaich M et al. Sorafenib in combination with standard induction and consolidation therapy in elderly AML patients: results from a randomized placebo-controlled phase II trial. ASH Annu Meet Abstr 2010; 116: 333.

    Google Scholar 

  30. Levis M, Ravandi F, Wang ES, Baer MR, Perl A, Coutre S et al. Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. Blood 2011; 117: 3294–3301.

    Article  CAS  Google Scholar 

  31. Sato T, Yang X, Knapper S, White P, Smith BD, Galkin S et al. FLT3 ligand impedes the efficacy of FLT3 inhibitors in vitro and in vivo. Blood 2011; 117: 3286–3293.

    Article  CAS  Google Scholar 

  32. Winkler J, Rech D, Kallert S, Rech J, Meidenbauer N, Roesler W et al. Sorafenib induces sustained molecular remission in FLT3-ITD positive AML with relapse after second allogeneic stem cell transplantation without exacerbation of acute GVHD: a case report. Leuk Res 2010; 34: e270–e272.

    Article  CAS  Google Scholar 

  33. Sora F, Chiusolo P, Metafuni E, Bellesi S, Giammarco S, Laurenti L et al. Sorafenib for refractory FMS-like tyrosine kinase receptor-3 (FLT3/ITD+) acute myeloid leukemia after allogenic stem cell transplantation. Leuk Res 2011; 35: 422–423.

    Article  Google Scholar 

  34. Hess G, Bunjes D, Siegert W, Schwerdtfeger R, Ledderose G, Wassmann B et al. Sustained complete molecular remissions after treatment with imatinib-mesylate in patients with failure after allogeneic stem cell transplantation for chronic myelogenous leukemia: results of a prospective phase II open-label multicenter study. J Clin Oncol 2005; 23: 7583–7593.

    Article  CAS  Google Scholar 

  35. Yokoyama H, Lundqvist A, Su S, Childs R . Toxic effects of sorafenib when given early after allogeneic hematopoietic stem cell transplantation. Blood 2010; 116: 2858–2859.

    Article  CAS  Google Scholar 

  36. Sharma M, Ravandi F, Bayraktar UD, Chiattone A, Bashir Q, Giralt S et al. Treatment of FLT3-ITD-positive acute myeloid leukemia relapsing after allogeneic stem cell transplantation with sorafenib. Biol Blood Marrow Transplant 2011; 17: 1874–1877.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are particularly thankful to Michael Lübbert for critically reading the manuscript and Thomas Pabst, Kristina Siegloch, Julian Sprague for contributing their patients. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) Klinische Forschergruppe KFO210 TP1 (to AB) and TP3 (to AN), the Transregio SFB 17 (to AB und AN), the Behring Röntgen Foundation TP51-0057 (to AB) by a research grant of the University Medical Center Gießen and Marburg TP 24/2010 (to AB), the LOEWE-consortium ‘Tumor and Inflammation’ (to AB and AN) and the German Carreras Leukemia Foundation AH 06-01 and AR 08-05v (to AN) and R 11-03 (to SS).

SKM treated the patients, performed the research, analyzed the data, compiled the figures and helped in writing the paper. All co-investigators treated patients, collected and provided clinical data. AB treated patients, designed and coordinated the research, analyzed the data and wrote the paper. AN coordinated the research and discussed the data. All authors critically reviewed and edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Burchert.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Presented in part as abstract at the 51st and 52nd annual meeting of the American Society of Hematology, New Orleans, LA, 2009 and Orlando, FL, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metzelder, S., Schroeder, T., Finck, A. et al. High activity of sorafenib in FLT3-ITD-positive acute myeloid leukemia synergizes with allo-immune effects to induce sustained responses. Leukemia 26, 2353–2359 (2012). https://doi.org/10.1038/leu.2012.105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.105

Keywords

This article is cited by

Search

Quick links