Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Role and potential for therapeutic targeting of MYB in leukemia

Abstract

The Myb protein was first identified as an oncogene that causes leukemia in chickens. Since then, it has been widely associated with different types of cancers and studied in detail in myeloid leukemias. However, despite these studies, its role in the induction, pathogenesis and maintenance of AML, and other blood disorders, is still not well understood. Recent efforts to uncover its plethora of transcriptional targets have provided key insights into understanding its mechanism of action. This review evaluates our current knowledge of the role of Myb in leukemia, with a particular focus on AML, from the vast literature spanning three decades, highlighting key studies that have influenced our understanding. We discuss recent insights into its role in leukemogenesis and how these could be exploited for the therapeutic targeting of Myb, its associated co-regulators or its target genes, in order to improve outcomes in the treatment of a wide range of hematopoietic malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Beug H, von Kirchbach A, Doderlein G, Conscience JF, Graf T . Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation. Cell 1979; 18: 375–390.

    Article  CAS  PubMed  Google Scholar 

  2. Roussel M, Saule S, Lagrou C, Rommens C, Beug H, Graf T et al. Three new types of viral oncogene of cellular origin specific for haematopoietic cell transformation. Nature 1979; 281: 452–455.

    Article  CAS  PubMed  Google Scholar 

  3. Oh IH, Reddy EP . The myb gene family in cell growth, differentiation and apoptosis. Oncogene 1999; 18: 3017–3033.

    Article  CAS  PubMed  Google Scholar 

  4. Biedenkapp H, Borgmeyer U, Sippel AE, Klempnauer KH . Viral myb oncogene encodes a sequence-specific DNA-binding activity. Nature 1988; 335: 835–837.

    Article  CAS  PubMed  Google Scholar 

  5. Boyle WJ, Lipsick JS, Reddy EP, Baluda MA . Identification of the leukemogenic protein of avian myeloblastosis virus and of its normal cellular homologue. Proc Natl Acad Sci USA 1983; 80: 2834–2838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nomura T, Tanikawa J, Akimaru H, Kanei-Ishii C, Ichikawa-Iwata E, Khan MM et al. Oncogenic activation of c-Myb correlates with a loss of negative regulation by TIF1beta and Ski. J Biol Chem 2004; 279: 16715–16726.

    Article  CAS  PubMed  Google Scholar 

  7. Alm-Kristiansen AH, Saether T, Matre V, Gilfillan S, Dahle O, Gabrielsen OS . FLASH acts as a co-activator of the transcription factor c-Myb and localizes to active RNA polymerase II foci. Oncogene 2008; 27: 4644–4656.

    Article  CAS  PubMed  Google Scholar 

  8. Saether T, Berge T, Ledsaak M, Matre V, Alm-Kristiansen AH, Dahle O et al. The chromatin remodeling factor Mi-2alpha acts as a novel co-activator for human c-Myb. J Biol Chem 2007; 282: 13994–14005.

    Article  CAS  PubMed  Google Scholar 

  9. Dai P, Akimaru H, Tanaka Y, Hou DX, Yasukawa T, Kanei-Ishii C et al. CBP as a transcriptional coactivator of c-Myb. Genes Dev 1996; 10: 528–540.

    Article  CAS  PubMed  Google Scholar 

  10. Oelgeschlager M, Janknecht R, Krieg J, Schreek S, Luscher B . Interaction of the co-activator CBP with Myb proteins: effects on Myb-specific transactivation and on the cooperativity with NF-M. EMBO J 1996; 15: 2771–2780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao H, Jin S, Gewirtz AM . The histone acetyltransferase TIP60 interacts with c-Myb and inactivates its transcriptional activity in human leukemia. J Biol Chem 2012; 287: 925–934.

    Article  CAS  PubMed  Google Scholar 

  12. Jin S, Zhao H, Yi Y, Nakata Y, Kalota A, Gewirtz AM . c-Myb binds MLL through menin in human leukemia cells and is an important driver of MLL-associated leukemogenesis. J Clin Invest 2010; 120: 593–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu YL, Ramsay RG, Kanei-Ishii C, Ishii S, Gonda TJ . Transformation by carboxyl-deleted Myb reflects increased transactivating capacity and disruption of a negative regulatory domain. Oncogene 1991; 6: 1549–1553.

    CAS  PubMed  Google Scholar 

  14. Sakura H, Kanei-Ishii C, Nagase T, Nakagoshi H, Gonda TJ, Ishii S . Delineation of three functional domains of the transcriptional activator encoded by the c-myb protooncogene. Proc Natl Acad Sci USA 1989; 86: 5758–5762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gonda TJ, Buckmaster C, Ramsay RG . Activation of c-myb by carboxy-terminal truncation: relationship to transformation of murine haemopoietic cells in vitro. Embo J 1989; 8: 1777–1783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grasser FA, Graf T, Lipsick JS . Protein truncation is required for the activation of the c-myb proto-oncogene. Mol Cell Biol 1991; 11: 3987–3996.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tavner FJ, Simpson R, Tashiro S, Favier D, Jenkins NA, Gilbert DJ et al. Molecular cloning reveals that the p160 Myb-binding protein is a novel, predominantly nucleolar protein which may play a role in transactivation by Myb. Mol Cell Biol 1998; 18: 989–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aziz N, Miglarese MR, Hendrickson RC, Shabanowitz J, Sturgill TW, Hunt DF et al. Modulation of c-Myb-induced transcription activation by a phosphorylation site near the negative regulatory domain. Proc Natl Acad Sci USA 1995; 92: 6429–6433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bies J, Wolff L . Oncogenic activation of c-Myb by carboxyl-terminal truncation leads to decreased proteolysis by the ubiquitin-26S proteasome pathway. Oncogene 1997; 14: 203–212.

    Article  CAS  PubMed  Google Scholar 

  20. Saether T, Pattabiraman DR, Alm-Kristiansen AH, Vogt-Kielland LT, Gonda TJ, Gabrielsen OS . A functional SUMO-interacting motif in the transactivation domain of c-Myb regulates its myeloid transforming ability. Oncogene 2011; 30: 212–222.

    Article  CAS  PubMed  Google Scholar 

  21. Dash AB, Orrico FC, Ness SA . The EVES motif mediates both intermolecular and intramolecular regulation of c-Myb. Genes Dev 1996; 10: 1858–1869.

    Article  CAS  PubMed  Google Scholar 

  22. Westin EH, Gallo RC, Arya SK, Eva A, Souza LM, Baluda MA et al. Differential expression of the amv gene in human hematopoietic cells. Proc Natl Acad Sci USA 1982; 79: 2194–2198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gonda TJ, Metcalf D . Expression of myb, myc and fos proto-oncogenes during the differentiation of a murine myeloid leukaemia. Nature 1984; 310: 249–251.

    Article  CAS  PubMed  Google Scholar 

  24. Guerin M, Sheng ZM, Andrieu N, Riou G . Strong association between c-myb and oestrogen-receptor expression in human breast cancer. Oncogene 1990; 5: 131–135.

    CAS  PubMed  Google Scholar 

  25. Ramsay RG, Thompson MA, Hayman JA, Reid G, Gonda TJ, Whitehead RH . Myb expression is higher in malignant human colonic carcinoma and premalignant adenomatous polyps than in normal mucosa. Cell Growth Differ 1992; 3: 723–730.

    CAS  PubMed  Google Scholar 

  26. Ramsay RG, Gonda TJ . MYB function in normal and cancer cells. Nat Rev Cancer 2008; 8: 523–534.

    Article  CAS  PubMed  Google Scholar 

  27. Gewirtz AM, Calabretta BA . c-myb antisense oligodeoxynucleotide inhibits normal human hematopoiesis in vitro. Science 1988; 242: 1303–1306.

    Article  CAS  PubMed  Google Scholar 

  28. Mucenski ML, McLain K, Kier AB, Swerdlow SH, Schreiner CM, Miller TA et al. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 1991; 65: 677–689.

    Article  CAS  PubMed  Google Scholar 

  29. Allen RD, Bender TP, Siu G . c-Myb is essential for early T cell development. Genes Dev 1999; 13: 1073–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pearson R, Weston K . c-Myb regulates the proliferation of immature thymocytes following beta-selection. Embo J 2000; 19: 6112–6120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sumner R, Crawford A, Mucenski M, Frampton J . Initiation of adult myelopoiesis can occur in the absence of c-Myb whereas subsequent development is strictly dependent on the transcription factor. Oncogene 2000; 19: 3335–3342.

    Article  CAS  PubMed  Google Scholar 

  32. Vegiopoulos A, Garcia P, Emambokus N, Frampton J . Coordination of erythropoiesis by the transcription factor c-Myb. Blood 2006; 107: 4703–4710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thomas MD, Kremer CS, Ravichandran KS, Rajewsky K, Bender TP . c-Myb is critical for B cell development and maintenance of follicular B cells. Immunity 2005; 23: 275–286.

    Article  CAS  PubMed  Google Scholar 

  34. Lieu YK, Reddy EP . Conditional c-myb knockout in adult hematopoietic stem cells leads to loss of self-renewal due to impaired proliferation and accelerated differentiation. Proc Natl Acad Sci USA 2009; 106: 21689–21694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sakamoto H, Dai G, Tsujino K, Hashimoto K, Huang X, Fujimoto T et al. Proper levels of c-Myb are discretely defined at distinct steps of hematopoietic cell development. Blood 2006; 108: 896–903.

    Article  CAS  PubMed  Google Scholar 

  36. Emambokus N, Vegiopoulos A, Harman B, Jenkinson E, Anderson G, Frampton J . Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. Embo J 2003; 22: 4478–4488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carpinelli MR, Hilton DJ, Metcalf D, Antonchuk JL, Hyland CD, Mifsud SL et al. Suppressor screen in Mpl-/- mice: c-Myb mutation causes supraphysiological production of platelets in the absence of thrombopoietin signaling. Proc Natl Acad Sci USA 2004; 101: 6553–6558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Papathanasiou P, Tunningley R, Pattabiraman DR, Ye P, Gonda TJ, Whittle B et al. A recessive screen for genes regulating hematopoietic stem cells. Blood 2010; 116: 5849–5858.

    Article  CAS  PubMed  Google Scholar 

  39. Sandberg ML, Sutton SE, Pletcher MT, Wiltshire T, Tarantino LM, Hogenesch JB et al. c-Myb and p300 regulate hematopoietic stem cell proliferation and differentiation. Dev Cell 2005; 8: 153–166.

    Article  CAS  PubMed  Google Scholar 

  40. Kasper LH, Boussouar F, Ney PA, Jackson CW, Rehg J, van Deursen JM et al. A transcription-factor-binding surface of coactivator p300 is required for haematopoiesis. Nature 2002; 419: 738–743.

    Article  CAS  PubMed  Google Scholar 

  41. Kauppi M, Murphy JM, de Graaf CA, Hyland CD, Greig KT, Metcalf D et al. Point mutation in the gene encoding p300 suppresses thrombocytopenia in Mpl-/- mice. Blood 2008; 112: 3148–3153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moscovici C, Samarut J, Gazzolo L, Moscovici MG . Myeloid and erythroid neoplastic responses to avian defective leukemia viruses in chickens and in quail. Virology 1981; 113: 765–768.

    Article  CAS  PubMed  Google Scholar 

  43. Radke K, Beug H, Kornfeld S, Graf T . Transformation of both erythroid and myeloid cells by E26, an avian leukemia virus that contains the myb gene. Cell 1982; 31 (Pt 2): 643–653.

    Article  CAS  PubMed  Google Scholar 

  44. Clarke MF, Kukowska-Latallo JF, Westin E, Smith M, Prochownik EV . Constitutive expression of a c-myb cDNA blocks Friend murine erythroleukemia cell differentiation. Mol Cell Biol 1988; 8: 884–892.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Selvakumaran M, Liebermann DA, Hoffman-Liebermann B . Deregulated c-myb disrupts interleukin-6- or leukemia inhibitory factor-induced myeloid differentiation prior to c-myc: role in leukemogenesis. Mol Cell Biol 1992; 12: 2493–2500.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mushinski JF, Potter M, Bauer SR, Reddy EP . DNA rearrangement and altered RNA expression of the c-myb oncogene in mouse plasmacytoid lymphosarcomas. Science 1983; 220: 795–798.

    Article  CAS  PubMed  Google Scholar 

  47. Shen-Ong GL, Morse HC, Potter M, Mushinski JF . Two modes of c-myb activation in virus-induced mouse myeloid tumors. Mol Cell Biol 1986; 6: 380–392.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Belli B, Wolff L, Nazarov V, Fan H . Proviral activation of the c-myb proto-oncogene is detectable in preleukemic mice infected neonatally with Moloney murine leukemia virus but not in resulting end stage T lymphomas. J Virol 1995; 69: 5138–5141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li J, Shen H, Himmel KL, Dupuy AJ, Largaespada DA, Nakamura T et al. Leukaemia disease genes: large-scale cloning and pathway predictions. Nat Genet 1999; 23: 348–353.

    Article  CAS  PubMed  Google Scholar 

  50. Kanei-Ishii C, MacMillan EM, Nomura T, Sarai A, Ramsay RG, Aimoto S et al. Transactivation and transformation by Myb are negatively regulated by a leucine-zipper structure. Proc Natl Acad Sci USA 1992; 89: 3088–3092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ibanez CE, Lipsick JS . Structural and functional domains of the myb oncogene: requirements for nuclear transport, myeloid transformation, and colony formation. J Virol 1988; 62: 1981–1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ferrao P, Gonda TJ, Ashman LK . Expression of constitutively activated human c-Kit in Myb transformed early myeloid cells leads to factor independence, histiocytic differentiation, and tumorigenicity. Blood 1997; 90: 4539–4552.

    Article  CAS  PubMed  Google Scholar 

  53. Gonda TJ, Ramsay RG, Johnson GR . Murine myeloid cell lines derived by in vitro infection with recombinant c-myb retroviruses express myb from rearranged vector proviruses. Embo J 1989; 8: 1767–1775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Metz T, Graf T, Leutz A . Activation of cMGF expression is a critical step in avian myeloid leukemogenesis. Embo J 1991; 10: 837–844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Barletta C, Pelicci PG, Kenyon LC, Smith SD, Dalla-Favera R . Relationship between the c-myb locus and the 6q-chromosomal aberration in leukemias and lymphomas. Science 1987; 235: 1064–1067.

    Article  CAS  PubMed  Google Scholar 

  56. Pelicci PG, Lanfrancone L, Brathwaite MD, Wolman SR, Dalla-Favera R . Amplification of the c-myb oncogene in a case of human acute myelogenous leukemia. Science 1984; 224: 1117–1121.

    Article  CAS  PubMed  Google Scholar 

  57. Tomita A, Watanabe T, Kosugi H, Ohashi H, Uchida T, Kinoshita T et al. Truncated c-Myb expression in the human leukemia cell line TK-6. Leukemia 1998; 12: 1422–1429.

    Article  CAS  PubMed  Google Scholar 

  58. Clappier E, Cuccuini W, Kalota A, Crinquette A, Cayuela JM, Dik WA et al. The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. Blood 2007; 110: 1251–1261.

    Article  CAS  PubMed  Google Scholar 

  59. Lahortiga I, De Keersmaecker K, Van Vlierberghe P, Graux C, Cauwelier B, Lambert F et al. Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nat Genet 2007; 39: 593–595.

    Article  CAS  PubMed  Google Scholar 

  60. O'Neil J, Tchinda J, Gutierrez A, Moreau L, Maser RS, Wong KK et al. Alu elements mediate MYB gene tandem duplication in human T-ALL. J Exp Med 2007; 204: 3059–3066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Murati A, Gervais C, Carbuccia N, Finetti P, Cervera N, Adelaide J et al. Genome profiling of acute myelomonocytic leukemia: alteration of the MYB locus in MYST3-linked cases. Leukemia 2009; 23: 85–94.

    Article  CAS  PubMed  Google Scholar 

  62. Belloni E, Shing D, Tapinassi C, Viale A, Mancuso P, Malazzi O et al. In vivo expression of an aberrant MYB-GATA1 fusion induces leukemia in the presence of GATA1 reduced levels. Leukemia 2011; 25: 733–736.

    Article  CAS  PubMed  Google Scholar 

  63. Quelen C, Lippert E, Struski S, Demur C, Soler G, Prade N et al. Identification of a transforming MYB-GATA1 fusion gene in acute basophilic leukemia: a new entity in male infants. Blood 2011; 117: 5719–5722.

    Article  CAS  PubMed  Google Scholar 

  64. Dash A, Gilliland DG . Molecular genetics of acute myeloid leukaemia. Best Pract Res Clin Haematol 2001; 14: 49–64.

    Article  CAS  PubMed  Google Scholar 

  65. Kelly LM, Gilliland DG . Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet 2002; 3: 179–198.

    Article  CAS  PubMed  Google Scholar 

  66. Gilliland DG . Molecular genetics of human leukemias: new insights into therapy. Semin Hematol 2002; 39 (Suppl 3): 6–11.

    Article  CAS  PubMed  Google Scholar 

  67. Slany RK . The molecular biology of mixed lineage leukemia. Haematologica 2009; 94: 984–993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Anfossi G, Gewirtz AM, Calabretta B . An oligomer complementary to c-myb-encoded mRNA inhibits proliferation of human myeloid leukemia cell lines. Proc Natl Acad Sci USA 1989; 86: 3379–3383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Calabretta B, Sims RB, Valtieri M, Caracciolo D, Szczylik C, Venturelli D et al. Normal and leukemic hematopoietic cells manifest differential sensitivity to inhibitory effects of c-myb antisense oligodeoxynucleotides: an in vitro study relevant to bone marrow purging. Proc Natl Acad Sci USA 1991; 88: 2351–2355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hess JL, Bittner CB, Zeisig DT, Bach C, Fuchs U, Borkhardt A et al. c-Myb is an essential downstream target for homeobox-mediated transformation of hematopoietic cells. Blood 2006; 108: 297–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Huang Y, Sitwala K, Bronstein J, Sanders D, Dandekar M, Collins C et al. Identification and characterization of Hoxa9 binding sites in hematopoietic cells. Blood 2012; 119: 388–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Somervaille TC, Matheny CJ, Spencer GJ, Iwasaki M, Rinn JL, Witten DM et al. Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. Cell Stem Cell 2009; 4: 129–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zuber J, Rappaport AR, Luo W, Wang E, Chen C, Vaseva AV et al. An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance. Genes Dev 2011; 25: 1628–1640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Arai M, Dyson HJ, Wright PE . Leu628 of the KIX domain of CBP is a key residue for the interaction with the MLL transactivation domain. FEBS Lett 2010; 584: 4500–4504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. De Guzman RN, Goto NK, Dyson HJ, Wright PE . Structural basis for cooperative transcription factor binding to the CBP coactivator. J Mol Biol 2006; 355: 1005–1013.

    Article  CAS  PubMed  Google Scholar 

  76. Goto NK, Zor T, Martinez-Yamout M, Dyson HJ, Wright PE . Cooperativity in transcription factor binding to the coactivator CREB-binding protein (CBP). The mixed lineage leukemia protein (MLL) activation domain binds to an allosteric site on the KIX domain. J Biol Chem 2002; 277: 43168–43174.

    Article  CAS  PubMed  Google Scholar 

  77. Lidonnici MR, Corradini F, Waldron T, Bender TP, Calabretta B . Requirement of c-Myb for p210(BCR/ABL)-dependent transformation of hematopoietic progenitors and leukemogenesis. Blood 2008; 111: 4771–4779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Waldron T, De Dominici M, Soliera AR, Audia A, Iacobucci I, Lonetti A et al. c-Myb and its target Bmi1 are required for p190BCR/ABL leukemogenesis in mouse and human cells. Leukemia 2011; Sep: 30.

    Google Scholar 

  79. Nucifora G, Rowley JD . AML1 and the 8;21 and 3;21 translocations in acute and chronic myeloid leukemia. Blood 1995; 86: 1–14.

    Article  CAS  PubMed  Google Scholar 

  80. Zhao L, Glazov EA, Pattabiraman DR, Al-Owaidi F, Zhang P, Brown MA et al. Integrated genome-wide chromatin occupancy and expression analyses identify key myeloid pro-differentiation transcription factors repressed by Myb. Nucleic Acids Res 2011; 39: 4664–4679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pattabiraman DR, Sun J, Dowhan DH, Ishii S, Gonda TJ . Mutations in multiple domains of c-Myb disrupt interaction with CBP/p300 and abrogate myeloid transforming ability. Mol Cancer Res 2009; 7: 1477–1486.

    Article  CAS  PubMed  Google Scholar 

  82. Ratajczak MZ, Kant JA, Luger SM, Hijiya N, Zhang J, Zon G et al. In vivo treatment of human leukemia in a scid mouse model with c-myb antisense oligodeoxynucleotides. Proc Natl Acad Sci USA 1992; 89: 11823–11827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gewirtz AM, Sokol DL, Ratajczak MZ . Nucleic acid therapeutics: state of the art and future prospects. Blood 1998; 92: 712–736.

    Article  CAS  PubMed  Google Scholar 

  84. Aagaard L, Rossi JJ . RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 2007; 59: 75–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bender TP, Thompson CB, Kuehl WM . Differential expression of c-myb mRNA in murine B lymphomas by a block to transcription elongation. Science 1987; 237: 1473–1476.

    Article  CAS  PubMed  Google Scholar 

  86. Hugo H, Cures A, Suraweera N, Drabsch Y, Purcell D, Mantamadiotis T et al. Mutations in the MYB intron I regulatory sequence increase transcription in colon cancers. Genes Chromosomes Cancer 2006; 45: 1143–1154.

    Article  CAS  PubMed  Google Scholar 

  87. Thompson MA, Flegg R, Westin EH, Ramsay RG . Microsatellite deletions in the c-myb transcriptional attenuator region associated with over-expression in colon tumour cell lines. Oncogene 1997; 14: 1715–1723.

    Article  CAS  PubMed  Google Scholar 

  88. Drabsch Y, Hugo H, Zhang R, Dowhan DH, Miao YR, Gewirtz AM et al. Mechanism of and requirement for estrogen-regulated MYB expression in estrogen-receptor-positive breast cancer cells. Proc Natl Acad Sci USA 2007; 104: 13762–13767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Suhasini M, Pilz RB . Transcriptional elongation of c-myb is regulated by NF-kappaB (p50/RelB). Oncogene 1999; 18: 7360–7369.

    Article  CAS  PubMed  Google Scholar 

  90. Kong D, Park EJ, Stephen AG, Calvani M, Cardellina JH, Monks A et al. Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res 2005; 65: 9047–9055.

    Article  CAS  PubMed  Google Scholar 

  91. Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC et al. Direct inhibition of the NOTCH transcription factor complex. Nature 2009; 462: 182–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mitra P, Pereira LA, Drabsch Y, Ramsay RG, Gonda TJ . Estrogen receptor-alpha recruits P-TEFb to overcome transcriptional pausing in intron 1 of the MYB gene. Nucleic Acids Res 2012; 40: 5988–6000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jang MK, Mochizuki K, Zhou M, Jeong HS, Brady JN, Ozato K . The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell 2005; 19: 523–534.

    Article  CAS  PubMed  Google Scholar 

  94. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O et al. Selective inhibition of BET bromodomains. Nature 2010; 468: 1067–1073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zor T, De Guzman RN, Dyson HJ, Wright PE . Solution structure of the KIX domain of CBP bound to the transactivation domain of c-Myb. J Mol Biol 2004; 337: 521–534.

    Article  CAS  PubMed  Google Scholar 

  96. Kindler T, Lipka DB, Fischer T . FLT3 as a therapeutic target in AML: still challenging after all these years. Blood 2010; 116: 5089–5102.

    Article  CAS  PubMed  Google Scholar 

  97. Mullard A . Protein-protein interaction inhibitors get into the groove. Nat Rev Drug Discov 2012; 11: 173–175.

    Article  CAS  PubMed  Google Scholar 

  98. Chipuk JE, Fisher JC, Dillon CP, Kriwacki RW, Kuwana T, Green DR . Mechanism of apoptosis induction by inhibition of the anti-apoptotic BCL-2 proteins. Proc Natl Acad Sci USA 2008; 105: 20327–20332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005; 435: 677–681.

    Article  CAS  PubMed  Google Scholar 

  100. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303: 844–848.

    Article  CAS  PubMed  Google Scholar 

  101. Hoffman-LaRoche . A Study of RO5045337 [RG7112] in Patients With Hematologic Neoplasms. Bethesda, MD: ClinicalTrials.gov, 2011.

    Google Scholar 

  102. Hoffman-LaRoche . A Study of RO5045337 [RG7112] in Patients With Advanced Solid Tumors. Bethesda, MD: ClinicalTrials.gov, 2012.

    Google Scholar 

  103. Walensky LD, Kung AL, Escher I, Malia TJ, Barbuto S, Wright RD et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 2004; 305: 1466–1470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ness SA . Myb binding proteins: regulators and cohorts in transformation. Oncogene 1999; 18: 3039–3046.

    Article  CAS  PubMed  Google Scholar 

  105. Grembecka J, He S, Shi A, Purohit T, Muntean AG, Sorenson RJ et al. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat Chem Biol 2012; 8: 277–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kumar A, Lee CM, Reddy EP . c-Myc is essential but not sufficient for c-Myb-mediated block of granulocytic differentiation. J Biol Chem 2003; 278: 11480–11488.

    Article  CAS  PubMed  Google Scholar 

  107. Schmidt M, Nazarov V, Stevens L, Watson R, Wolff L . Regulation of the resident chromosomal copy of c-myc by c-Myb is involved in myeloid leukemogenesis. Mol Cell Biol 2000; 20: 1970–1981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011; 478: 524–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bujnicki T, Wilczek C, Schomburg C, Feldmann F, Schlenke P, Muller-Tidow C et al. Inhibition of Myb-dependent gene expression by the sesquiterpene lactone mexicanin-I. Leukemia 2011; 26: 615–702.

    Article  PubMed  CAS  Google Scholar 

  110. Leverson JD, Koskinen PJ, Orrico FC, Rainio EM, Jalkanen KJ, Dash AB et al. Pim-1 kinase and p100 cooperate to enhance c-Myb activity. Mol Cell 1998; 2: 417–425.

    Article  CAS  PubMed  Google Scholar 

  111. Chen LS, Redkar S, Taverna P, Cortes JE, Gandhi V . Mechanisms of cytotoxicity to Pim kinase inhibitor, SGI-1776, in acute myeloid leukemia. Blood 2011; 118: 693–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kitagawa K, Hiramatsu Y, Uchida C, Isobe T, Hattori T, Oda T et al. Fbw7 promotes ubiquitin-dependent degradation of c-Myb: involvement of GSK3-mediated phosphorylation of Thr-572 in mouse c-Myb. Oncogene 2009; 28: 2393–2405.

    Article  CAS  PubMed  Google Scholar 

  113. Zhou F, Zhang L, van Laar T, van Dam H, Ten Dijke P . GSK3beta inactivation induces apoptosis of leukemia cells by repressing the function of c-Myb. Mol Biol Cell 2011; 22: 3533–3540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kitagawa K, Kotake Y, Hiramatsu Y, Liu N, Suzuki S, Nakamura S et al. GSK3 regulates the expressions of human and mouse c-Myb via different mechanisms. Cell Div 2010; 5: 27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rosson D, Tereba A . Transcription of hematopoietic-associated oncogenes in childhood leukemia. Cancer Res 1983; 43: 3912–3918.

    CAS  PubMed  Google Scholar 

  116. Ferrari S, Torelli U, Selleri L, Donelli A, Venturelli D, Narni F et al. Study of the levels of expression of two oncogenes, c-myc and c-myb, in acute and chronic leukemias of both lymphoid and myeloid lineage. Leuk Res 1985; 9: 833–842.

    Article  CAS  PubMed  Google Scholar 

  117. Ohyashiki K, Ohyashiki JH, Kinniburgh AJ, Toyama K, Ito H, Minowada J et al. myb oncogene in human hematopoietic neoplasia with 6q- anomaly. Cancer Genet Cytogenet 1988; 33: 83–92.

    Article  CAS  PubMed  Google Scholar 

  118. Siegert W, Beutler C, Langmach K, Keitel C, Schmidt CA . Differential expression of the oncoproteins c-myc and c-myb in human lymphoproliferative disorders. Eur J Cancer 1990; 26: 733–737.

    Article  CAS  PubMed  Google Scholar 

  119. Okada M, Tada M, Kanda N, Masuda M, Mizoguchi H, Kazuma M et al. c-myb gene analysis in T-cell malignancies with del(6q). Cancer Genet Cytogenet 1990; 48: 229–236.

    Article  CAS  PubMed  Google Scholar 

  120. Jacobs SM, Gorse KM, Kennedy SJ, Westin EH . Characterization of a rearrangement in the c-MYB promoter in the acute lymphoblastic leukemia cell line CCRF-CEM. Cancer Genet Cytogenet 1994; 75: 31–39.

    Article  CAS  PubMed  Google Scholar 

  121. Sinclair P, Harrison CJ, Jarosova M, Foroni L . Analysis of balanced rearrangements of chromosome 6 in acute leukemia: clustered breakpoints in q22-q23 and possible involvement of c-MYB in a new recurrent translocation, t(6;7)(q23;q32 through 36). Haematologica 2005; 90: 602–611.

    CAS  PubMed  Google Scholar 

  122. Kawamata N, Zhang L, Ogawa S, Nannya Y, Dashti A, Lu D et al. Double minute chromosomes containing MYB gene and NUP214-ABL1 fusion gene in T-cell leukemia detected by single nucleotide polymorphism DNA microarray and fluorescence in situ hybridization. Leuk Res 2009; 33: 569–571.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

DRP was supported by a PhD Scholarship from the Leukaemia Foundation (Australia). Work in the Gonda laboratory is and/or has been supported by funding from the National Health and Medical Research Council (Australia), the Australian Research Council and the Leukaemia Foundation (Australia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T J Gonda.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pattabiraman, D., Gonda, T. Role and potential for therapeutic targeting of MYB in leukemia. Leukemia 27, 269–277 (2013). https://doi.org/10.1038/leu.2012.225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.225

Keywords

This article is cited by

Search

Quick links