Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Real-time PCR quantification of major Wilms’ tumor gene 1 (WT1) isoforms in acute myeloid leukemia, their characteristic expression patterns and possible functional consequences

Abstract

Wilms’ tumor gene 1 (WT1) functions including some contradictory effects may be explained by the presence and interactions of its isoforms, however, their evaluation has been so far complicated by several technical problems. We designed unique quantitative PCR systems for direct quantification of the major WT1 isoforms A[EX5−/KTS−], B[+/−], C[−/+] and D[+/+] and verified their sensitivity, specificity and reproducibility in extensive testing. With this method we evaluated WT1 total and isoform expression in 23 normal bone marrow (BM) samples, 73 childhood acute myeloid leukemia (AML), 20 childhood myelodysplastic syndrome (MDS), 9 childhood severe aplastic anemia (SAA), 30 adult AML and 29 adult MDS patients. WT1 isoform patterns showed differences among these samples and clustered them into groups representing the specific diagnoses (P<0.0001). Isoform profiles were independent of total WT1 expression and possess certain common features—overexpression of isoform D and EX5[+] variants. The KTS[+]/KTS[−] ratio was less variable than the EX5[+]/EX5[−] ratio and differed between children and adults (P<0.001); the EX5[+]/EX5[−] ratio varied between diagnoses (AML vs MDS, P<0.001). These findings bring new insights into WT1 isoform function and suggest that the ratio of WT1 isoforms, particularly EX5 variants, is probably crucial for the process of malignant transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Sugiyama H . Wilms’ tumor gene WT1: its oncogenic function and clinical application. Int J Hematol 2001; 73: 177–187.

    Article  CAS  PubMed  Google Scholar 

  2. Virappane P, Gale R, Hills R, Kakkas I, Summers K, Stevens J et al. Mutation of the Wilms’ tumor 1 gene is a poor prognostic factor associated with chemotherapy resistance in normal karyotype acute myeloid leukemia: the United Kingdom Medical Research Council Adult Leukaemia Working Party. J Clin Oncol 2008; 26: 5429–5435.

    Article  CAS  PubMed  Google Scholar 

  3. Scharnhorst V, van der Eb AJ, Jochemsen AG . WT1 proteins: functions in growth and differentiation. Gene 2001; 273: 141–161.

    Article  CAS  PubMed  Google Scholar 

  4. Ellisen LW, Carlesso N, Cheng T, Scadden DT, Haber DA . The Wilms tumor suppressor WT1 directs stage-specific quiescence and differentiation of human hematopoietic progenitor cells. EMBO J 2001; 20: 1897–1909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wagner KD, Wagner N, Schedl A . The complex life of WT1. J Cell Sci 2003; 116(Pt 9): 1653–1658.

    Article  CAS  PubMed  Google Scholar 

  6. Ariyaratana S, Loeb DM . The role of the Wilms tumour gene (WT1) in normal and malignant haematopoiesis. Expert Rev Mol Med 2007; 9: 1–17.

    Article  PubMed  Google Scholar 

  7. Yang L, Han Y, Suarez Saiz F, Minden MD . A tumor suppressor and oncogene: the WT1 story. Leukemia 2007; 21: 868–876.

    Article  CAS  PubMed  Google Scholar 

  8. Burwell EA, McCarty GP, Simpson LA, Thompson KA, Loeb DM . Isoforms of Wilms’ tumor suppressor gene (WT1) have distinct effects on mammary epithelial cells. Oncogene 2007; 26: 3423–3430.

    Article  CAS  PubMed  Google Scholar 

  9. Scholz H, Kirschner KM . Oxygen-dependent gene expression in development and cancer: lessons learned from the Wilms’ tumor gene, WT1. Front Mol Neurosci 4: 4.

  10. Haber DA, Sohn RL, Buckler AJ, Pelletier J, Call KM, Housman DE . Alternative splicing and genomic structure of the Wilms tumor gene WT1. Proc Natl Acad Sci USA 1991; 88: 9618–9622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hewitt SM, Hamada S, McDonnell TJ, Rauscher FJ, Saunders GF . Regulation of the proto-oncogenes bcl-2 and c-myc by the Wilms’ tumor suppressor gene WT1. Cancer Res 1995; 55: 5386–5389.

    CAS  PubMed  Google Scholar 

  12. Harrington MA, Konicek B, Song A, Xia XL, Fredericks WJ, Rauscher FJ . Inhibition of colony-stimulating factor-1 promoter activity by the product of the Wilms’ tumor locus. J Biol Chem 1993; 268: 21271–21275.

    CAS  PubMed  Google Scholar 

  13. Bruening W, Pelletier J . A non-AUG translational initiation event generates novel WT1 isoforms. J Biol Chem 1996; 271: 8646–8654.

    Article  CAS  PubMed  Google Scholar 

  14. Dallosso AR, Hancock AL, Brown KW, Williams AC, Jackson S, Malik K . Genomic imprinting at the WT1 gene involves a novel coding transcript (AWT1) that shows deregulation in Wilms’ tumours. Hum Mol Genet 2004; 13: 405–415.

    Article  CAS  PubMed  Google Scholar 

  15. Hossain A, Nixon M, Kuo MT, Saunders GF . N-terminally truncated WT1 protein with oncogenic properties overexpressed in leukemia. J Biol Chem 2006; 281: 28122–28130.

    Article  CAS  PubMed  Google Scholar 

  16. Niksic M, Slight J, Sanford JR, Caceres JF, Hastie ND . The Wilms’ tumour protein (WT1) shuttles between nucleus and cytoplasm and is present in functional polysomes. Hum Mol Genet 2004; 13: 463–471.

    Article  CAS  PubMed  Google Scholar 

  17. Florio F, Cesaro E, Montano G, Izzo P, Miles C, Costanzo P . Biochemical and functional interaction between ZNF224 and ZNF255, two members of the Kruppel-like zinc-finger protein family and WT1 protein isoforms. Hum Mol Genet 19: 3544–3556.

    Article  CAS  PubMed  Google Scholar 

  18. Dutton JR, Lahiri D, Ward A . Different isoforms of the Wilms’ tumour protein WT1 have distinct patterns of distribution and trafficking within the nucleus. Cell Prolif 2006; 39: 519–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang ZY, Qiu QQ, Huang J, Gurrieri M, Deuel TF . Products of alternatively spliced transcripts of the Wilms’ tumor suppressor gene, wt1, have altered DNA binding specificity and regulate transcription in different ways. Oncogene 1995; 10: 415–422.

    CAS  PubMed  Google Scholar 

  20. Ito K, Oji Y, Tatsumi N, Shimizu S, Kanai Y, Nakazawa T et al. Antiapoptotic function of 17AA(+)WT1 (Wilms’ tumor gene) isoforms on the intrinsic apoptosis pathway. Oncogene 2006; 25: 4217–4229.

    Article  CAS  PubMed  Google Scholar 

  21. Bickmore WA, Oghene K, Little MH, Seawright A, van Heyningen V, Hastie ND . Modulation of DNA binding specificity by alternative splicing of the Wilms tumor wt1 gene transcript. Science 1992; 257: 235–237.

    Article  CAS  PubMed  Google Scholar 

  22. Davies RC, Calvio C, Bratt E, Larsson SH, Lamond AI, Hastie ND . WT1 interacts with the splicing factor U2AF65 in an isoform-dependent manner and can be incorporated into spliceosomes. Genes Dev 1998; 12: 3217–3225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mayo MW, Wang CY, Drouin SS, Madrid LV, Marshall AF, Reed JC et al. WT1 modulates apoptosis by transcriptionally upregulating the bcl-2 proto-oncogene. EMBO J 1999; 18: 3990–4003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dechsukhum C, Ware JL, Ferreira-Gonzalez A, Wilkinson DS, Garrett CT . Detection of a novel truncated WT1 transcript in human neoplasia. Mol Diagn 2000; 5: 117–128.

    Article  CAS  PubMed  Google Scholar 

  25. Dumur CI, Dechsukhum C, Wilkinson DS, Garrett CT, Ware JL, Ferreira-Gonzalez A . Analytical validation of a real-time reverse transcription-polymerase chain reaction quantitation of different transcripts of the Wilms’ tumor suppressor gene (WT1). Anal Biochem 2002; 309: 127–136.

    Article  CAS  PubMed  Google Scholar 

  26. Renshaw J, King-Underwood L, Pritchard-Jones K . Differential splicing of exon 5 of the Wilms tumour (WTI) gene. Genes Chromosomes Cancer 1997; 19: 256–266.

    Article  CAS  PubMed  Google Scholar 

  27. Moorwood K, Salpekar A, Ivins SM, Hall J, Powlesland RM, Brown KW et al. Transactivation of the WT1 antisense promoter is unique to the WT1[+/-] isoform. FEBS Lett 1999; 456: 131–136.

    Article  CAS  PubMed  Google Scholar 

  28. Barbaux S, Niaudet P, Gubler MC, Grunfeld JP, Jaubert F, Kuttenn F et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 1997; 17: 467–470.

    Article  CAS  PubMed  Google Scholar 

  29. Pelletier J, Bruening W, Kashtan CE, Mauer SM, Manivel JC, Striegel JE et al. Germline mutations in the Wilms’ tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 1991; 67: 437–447.

    Article  CAS  PubMed  Google Scholar 

  30. Hohenstein P, Hastie ND . The many facets of the Wilms’ tumour gene, WT1. Hum Mol Genet 2006; 15(special issueno 2): R196–R201.

    Article  CAS  PubMed  Google Scholar 

  31. Yang C, Romaniuk PJ . The ratio of +/-KTS splice variants of the Wilms’ tumour suppressor protein WT1 mRNA is determined by an intronic enhancer. Biochem Cell Biol 2008; 86: 312–321.

    Article  CAS  PubMed  Google Scholar 

  32. Gu W, Hu S, Chen Z, Qiu G, Cen J, He B et al. High expression of WT1 gene in acute myeloid leukemias with more predominant WT1+17AA isoforms at relapse. Leuk Res 2010; 34: 46–49.

    Article  CAS  PubMed  Google Scholar 

  33. Siehl JM, Reinwald M, Heufelder K, Menssen HD, Keilholz U, Thiel E . Expression of Wilms’ tumor gene 1 at different stages of acute myeloid leukemia and analysis of its major splice variants. Ann Hematol 2004; 83: 745–750.

    Article  PubMed  Google Scholar 

  34. Ishikawa Y, Kiyoi H, Naoe T . Prevalence and clinical characteristics of N-terminally truncated WT1 expression in acute myeloid leukemia. Leuk Res May 35: 685–688.

    Article  CAS  PubMed  Google Scholar 

  35. Jomgeow T, Oji Y, Tsuji N, Ikeda Y, Ito K, Tsuda A et al. Wilms’ tumor gene WT1 17AA(-)/KTS(-) isoform induces morphological changes and promotes cell migration and invasion in vitro. Cancer Sci 2006; 97: 259–270.

    Article  CAS  PubMed  Google Scholar 

  36. Bor YC, Swartz J, Morrison A, Rekosh D, Ladomery M, Hammarskjold ML . The Wilms’ tumor 1 (WT1) gene (+KTS isoform) functions with a CTE to enhance translation from an unspliced RNA with a retained intron. Genes Dev 2006; 20: 1597–1608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tatsumi N, Oji Y, Tsuji N, Tsuda A, Higashio M, Aoyagi S et al. Wilms’ tumor gene WT1-shRNA as a potent apoptosis-inducing agent for solid tumors. Int J Oncol 2008; 32: 701–711.

    CAS  PubMed  Google Scholar 

  38. Moriya S, Takiguchi M, Seki N . Expression of the WT1 gene—KTS domain isoforms suppresses the invasive ability of human lung squamous cell carcinoma cells. Int J Oncol 2008; 32: 349–356.

    CAS  PubMed  Google Scholar 

  39. Morrison AA, Venables JP, Dellaire G, Ladomery MR . The Wilms tumour suppressor protein WT1 (+KTS isoform) binds alpha-actinin 1 mRNA via its zinc-finger domain. Biochem Cell Biol 2006; 84: 789–798.

    Article  CAS  PubMed  Google Scholar 

  40. Han Y, San-Marina S, Yang L, Khoury H, Minden MD . The zinc finger domain of Wilms’ tumor 1 suppressor gene (WT1) behaves as a dominant negative, leading to abrogation of WT1 oncogenic potential in breast cancer cells. Breast Cancer Res 2007; 9: R43.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Boublikova L, Kalinova M, Ryan J, Quinn F, O'Marcaigh A, Smith O et al. Wilms’ tumor gene 1 (WT1) expression in childhood acute lymphoblastic leukemia: a wide range of WT1 expression levels, its impact on prognosis and minimal residual disease monitoring. Leukemia 2006; 20: 254–263.

    Article  CAS  PubMed  Google Scholar 

  42. Krug U, Yasmeen A, Beger C, Baumer N, Dugas M, Berdel WE et al. Cyclin A1 regulates WT1 expression in acute myeloid leukemia cells. Int J Oncol 2009; 34: 129–136.

    CAS  PubMed  Google Scholar 

  43. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe Against Cancer program. Leukemia 2003; 17: 2318–2357.

    Article  CAS  PubMed  Google Scholar 

  44. Beillard E, Pallisgaard N, van der Velden VH, Bi W, Dee R, van der Schoot E et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’ quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR)—a Europe against cancer program. Leukemia 2003; 17: 2474–2486.

    Article  CAS  PubMed  Google Scholar 

  45. Willasch AM, Gruhn B, Coliva T, Kalinova M, Schneider G, Kreyenberg H et al. Standardization of WT1 mRNA quantitation for minimal residual disease monitoring in childhood AML and implications of WT1 gene mutations: a European multicenter study. Leukemia 2009; 23: 1472–1479.

    Article  CAS  PubMed  Google Scholar 

  46. Kerst G, Bergold N, Viebahn S, Gieseke F, Kalinova M, Trka J et al. WT1 protein expression in slowly proliferating myeloid leukemic cell lines is scarce throughout the cell cycle with a minimum in G0/G1 phase. Leuk Res 2008; 32: 1393–1399.

    Article  CAS  PubMed  Google Scholar 

  47. Kreuzer KA, Saborowski A, Lupberger J, Appelt C, Na IK, le Coutre P et al. Fluorescent 5'-exonuclease assay for the absolute quantification of Wilms’ tumour gene (WT1) mRNA: implications for monitoring human leukaemias. Br J Haematol 2001; 114: 313–318.

    Article  CAS  PubMed  Google Scholar 

  48. Cilloni D, Gottardi E, De Micheli D, Serra A, Volpe G, Messa F et al. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia 2002; 16: 2115–2121.

    Article  CAS  PubMed  Google Scholar 

  49. Cilloni D, Saglio G . WT1 as a universal marker for minimal residual disease detection and quantification in myeloid leukemias and in myelodysplastic syndrome. Acta Haematol 2004; 112: 79–84.

    Article  CAS  PubMed  Google Scholar 

  50. Trka J, Kalinova M, Hrusak O, Zuna J, Krejci O, Madzo J et al. Real-time quantitative PCR detection of WT1 gene expression in children with AML: prognostic significance, correlation with disease status and residual disease detection by flow cytometry. Leukemia 2002; 16: 1381–1389.

    Article  CAS  PubMed  Google Scholar 

  51. Ostergaard M, Olesen LH, Hasle H, Kjeldsen E, Hokland P . WT1 gene expression: an excellent tool for monitoring minimal residual disease in 70% of acute myeloid leukaemia patients—results from a single-centre study. Br J Haematol 2004; 125: 590–600.

    Article  CAS  PubMed  Google Scholar 

  52. Weisser M, Kern W, Rauhut S, Schoch C, Hiddemann W, Haferlach T et al. Prognostic impact of RT-PCR-based quantification of WT1 gene expression during MRD monitoring of acute myeloid leukemia. Leukemia 2005; 19: 1416–1423.

    Article  CAS  PubMed  Google Scholar 

  53. Lapillonne H, Renneville A, Auvrignon A, Flamant C, Blaise A, Perot C et al. High WT1 expression after induction therapy predicts high risk of relapse and death in pediatric acute myeloid leukemia. J Clin Oncol 2006; 24: 1507–1515.

    Article  CAS  PubMed  Google Scholar 

  54. Barragan E, Cervera J, Bolufer P, Ballester S, Martin G, Fernandez P et al. Prognostic implications of Wilms’ tumor gene (WT1) expression in patients with de novo acute myeloid leukemia. Haematologica 2004; 89: 926–933.

    CAS  PubMed  Google Scholar 

  55. Rodrigues PC, Oliveira SN, Viana MB, Matsuda EI, Nowill AE, Brandalise SR et al. Prognostic significance of WT1 gene expression in pediatric acute myeloid leukemia. Pediatr Blood Cancer 2007; 49: 133–138.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ondrej Cinek from the Department of Pediatrics, Pavel Seeman from the Department of Pediatric Neurology, Zdenek Sedlacek from the Institute of Medical Biology and Genetics, 2nd Faculty of Medicine, Charles University in Prague, Olfert Landt from TIB-MOLBIOL, Berlin, Germany and Fiona Quinn from the Cancer Molecular Diagnostics Laboratory, St James’s Hospital, Dublin, for their invaluable advice and experienced opinions during method development and testing. We also appreciated the help of Katerina Muzikova, Ester Mejstrikova and Martina Sukova from the Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, and Jana Markova from the Institute of Hematology and Blood Transfusion, Prague, with the identification and initial processing of some samples. We thank the staff of the participating Czech Pediatric Hematology Working Group centers for cooperation. This study is supported by the grant IGA NS10488-3. KK was supported by the Charles University (GAUK 81709) solely and JT by the COST Program (OC 09051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Trka.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramarzova, K., Stuchly, J., Willasch, A. et al. Real-time PCR quantification of major Wilms’ tumor gene 1 (WT1) isoforms in acute myeloid leukemia, their characteristic expression patterns and possible functional consequences. Leukemia 26, 2086–2095 (2012). https://doi.org/10.1038/leu.2012.76

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.76

Keywords

This article is cited by

Search

Quick links