Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

CD138-negative clonogenic cells are plasma cells but not B cells in some multiple myeloma patients

Subjects

Abstract

Clonogenic multiple myeloma (MM) cells reportedly lacked expression of plasma cell marker CD138. It was also shown that CD19+ clonotypic B cells can serve as MM progenitor cells in some patients. However, it is unclear whether CD138-negative clonogenic MM plasma cells are identical to clonotypic CD19+ B cells. We found that in vitro MM colony-forming cells were enriched in CD138CD19CD38++ plasma cells, while CD19+ B cells never formed MM colonies in 16 samples examined in this study. We next used the SCID-rab model, which enables engraftment of human MM in vivo. CD138CD19CD38++ plasma cells engrafted in this model rapidly propagated MM in 3 out of 9 cases, while no engraftment of CD19+ B cells was detected. In 4 out of 9 cases, CD138+ plasma cells propagated MM, although more slowly than CD138 cells. Finally, we transplanted CD19+ B cells from 13 MM patients into NOD/SCID IL2Rγc−/− mice, but MM did not develop. These results suggest that at least in some MM patients CD138-negative clonogenic cells are plasma cells rather than B cells, and that MM plasma cells including CD138 and CD138+ cells have the potential to propagate MM clones in vivo in the absence of CD19+ B cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Kyle RA, Rajkumar SV. . Multiple myeloma. N Engl J Med 2004; 351: 1860–1873.

    Article  CAS  PubMed  Google Scholar 

  2. Kyle RA, Rajkumar SV. . Multiple myeloma. Blood 2008; 111: 2962–2972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bakkus MH, Heirman C, Van Riet I, Van Camp B, Thielemans K. . Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood 1992; 80: 2326–2335.

    CAS  PubMed  Google Scholar 

  4. Vescio RA, Cao J, Hong CH, Lee JC, Wu CH, Der Danielian M et al. Myeloma Ig heavy chain V region sequences reveal prior antigenic selection and marked somatic mutation but no intraclonal diversity. J Immunol 1995; 155: 2487–2497.

    CAS  PubMed  Google Scholar 

  5. Sahota SS, Leo R, Hamblin TJ, Stevenson FK. . Myeloma VL and VH gene sequences reveal a complementary imprint of antigen selection in tumor cells. Blood 1997; 89: 219–226.

    CAS  PubMed  Google Scholar 

  6. Pilarski LM, Jensen GS. . Monoclonal circulating B cells in multiple myeloma. A continuously differentiating, possibly invasive, population as defined by expression of CD45 isoforms and adhesion molecules. Hematol Oncol Clin North Am 1992; 6: 297–322.

    Article  CAS  PubMed  Google Scholar 

  7. Bergsagel PL, Smith AM, Szczepek A, Mant MJ, Belch AR, Pilarski LM. . In multiple myeloma, clonotypic B lymphocytes are detectable among CD19+ peripheral blood cells expressing CD38, CD56, and monotypic Ig light chain. Blood 1995; 85: 436–447.

    CAS  PubMed  Google Scholar 

  8. Chen BJ, Epstein J. . Circulating clonal lymphocytes in myeloma constitute a minor subpopulation of B cells. Blood 1996; 87: 1972–1976.

    CAS  PubMed  Google Scholar 

  9. Rasmussen T, Jensen L, Johnsen HE. . The CD19 compartment in myeloma includes a population of clonal cells persistent after high-dose treatment. Leuk Lymphoma 2002; 43: 1075–1077.

    Article  PubMed  Google Scholar 

  10. Hamburger AW, Salmon SE. . Primary bioassay of human tumor stem cells. Science 1977; 197: 461–463.

    Article  CAS  PubMed  Google Scholar 

  11. Matsui W, Huff CA, Wang Q, Malehorn MT, Barber J, Tanhehco Y et al. Characterization of clonogenic multiple myeloma cells. Blood 2004; 103: 2332–2336.

    Article  CAS  PubMed  Google Scholar 

  12. Matsui W, Wang Q, Barber JP, Brennan S, Smith BD, Borrello I et al. Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 2008; 68: 190–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kukreja A, Hutchinson A, Dhodapkar K, Mazumder A, Vesole D, Angitapalli R et al. Enhancement of clonogenicity of human multiple myeloma by dendritic cells. J Exp Med 2006; 203: 1859–1865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Spisek R, Kukreja A, Chen LC, Matthews P, Mazumder A, Vesole D et al. Frequent and specific immunity to the embryonal stem cell-associated antigen SOX2 in patients with monoclonal gammopathy. J Exp Med 2007; 204: 831–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Peacock CD, Wang Q, Gesell GS, Corcoran-Schwartz IM, Jones E, Kim J et al. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA 2007; 104: 4048–4053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kirshner J, Thulien KJ, Martin LD, Debes Marun C, Reiman T, Belch AR et al. A unique three-dimensional model for evaluating the impact of therapy on multiple myeloma. Blood 2008; 112: 2935–2945.

    Article  CAS  PubMed  Google Scholar 

  17. Reid S, Yang S, Brown R, Kabani K, Aklilu E, Ho PJ et al. Characterisation and relevance of CD138-negative plasma cells in plasma cell myeloma. Int J Lab Hematol 2010; 32: 190–196.

    Article  Google Scholar 

  18. Pilarski LM, Seeberger K, Coupland RW, Eshpeter A, Keats JJ, Taylor BJ et al. Leukemic B cells clonally identical to myeloma plasma cells are myelomagenic in NOD/SCID mice. Exp Hematol 2002; 30: 221–228.

    Article  CAS  PubMed  Google Scholar 

  19. Pilarski LM, Hipperson G, Seeberger K, Pruski E, Coupland RW, Belch AR. . Myeloma progenitors in the blood of patients with aggressive or minimal disease: engraftment and self-renewal of primary human myeloma in the bone marrow of NOD SCID mice. Blood 2000; 95: 1056–1065.

    CAS  PubMed  Google Scholar 

  20. Kapoor P, Greipp PT, Morice WG, Rajkumar SV, Witzig TE, Greipp PR. . Anti-CD20 monoclonal antibody therapy in multiple myeloma. Br J Haematol 2008; 141: 135–148.

    Article  CAS  PubMed  Google Scholar 

  21. Yaccoby S, Barlogie B, Epstein J. . Primary myeloma cells growing in SCID-hu mice: a model for studying the biology and treatment of myeloma and its manifestations. Blood 1998; 92: 2908–2913.

    CAS  PubMed  Google Scholar 

  22. Yaccoby S, Epstein J. . The proliferative potential of myeloma plasma cells manifest in the SCID-hu host. Blood 1999; 94: 3576–3582.

    CAS  PubMed  Google Scholar 

  23. Yata K, Yaccoby S. . The SCID-rab model: a novel in vivo system for primary human myeloma demonstrating growth of CD138-expressing malignant cells. Leukemia 2004; 18: 1891–1897.

    Article  CAS  PubMed  Google Scholar 

  24. Wang J, Kimura T, Asada R, Harada S, Yokota S, Kawamoto Y et al. SCID-repopulating cell activity of human cord blood-derived CD34- cells assured by intra-bone marrow injection. Blood 2003; 101: 2924–2931.

    Article  CAS  PubMed  Google Scholar 

  25. Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood 2005; 106: 1565–1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fuhler GM, Baanstra M, Chesik D, Somasundaram R, Seckinger A, Hose D et al. Bone marrow stromal cell interaction reduces syndecan-1 expression and induces kinomic changes in myeloma cells. Exp Cell Res 2010; 316: 1816–1828.

    Article  CAS  PubMed  Google Scholar 

  27. Jakubikova J, Adamia S, Kost-Alimova M, Klippel S, Cervi D, Daley JF et al. Lenalidomide targets clonogenic side population in multiple myeloma: pathophysiologic and clinical implications. Blood 2011; 117: 4409–4419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nefedova Y, Sullivan DM, Bolick SC, Dalton WS, Gabrilovich DI. . Inhibition of Notch signaling induces apoptosis of myeloma cells and enhances sensitivity to chemotherapy. Blood 2008; 111: 2220–2229.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Manabu Kawakami, Masashi Nakagawa (Nissei Hospital, Osaka, Japan), Tamotsu Yamagami, Masaki Murakami, Shigeo Fuji, Eui Ho Kim (NTT West Hospital, Osaka, Japan), Shinichiro Kawamoto, Noboru Yonetani, Takayuki Takubo (Osaka Medical University), Hiroya Tamaki, Hiroyasu Ogawa (Hyogo Medical College) for collecting patient samples, and the Keihan Cord Blood Bank (Osaka, Japan) for supplying cord blood samples. This work was supported by the Knowledge Cluster Initiative (Stage II) established by the Ministry of Education, Culture, Sports, Science and Technology of Japan, by the Senri Life Science Foundation, by the Astellas Foundation for Research on Metabolic Disorders and by the Uehara Memorial Foundation (to N.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Hosen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosen, N., Matsuoka, Y., Kishida, S. et al. CD138-negative clonogenic cells are plasma cells but not B cells in some multiple myeloma patients. Leukemia 26, 2135–2141 (2012). https://doi.org/10.1038/leu.2012.80

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.80

Keywords

This article is cited by

Search

Quick links