Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myelodysplasias

SETBP1 mutations occur in 9% of MDS/MPN and in 4% of MPN cases and are strongly associated with atypical CML, monosomy 7, isochromosome i(17)(q10), ASXL1 and CBL mutations

Abstract

Chronic myeloid malignancies are categorized to the three main categories myeloproliferative neoplasms (MPNs), myelodysplastic syndromes (MDSs) and MDS/MPN overlap. So far, no specific genetic alteration profiles have been identified in the MDS/MPN overlap category. Recent studies identified mutations in SET-binding protein 1 (SETBP1) as novel marker in myeloid malignancies, especially in atypical chronic myeloid leukemia (aCML) and related diseases. We analyzed SETBP1 in 1 130 patients with MPN and MDS/MPN overlap and found mutation frequencies of 3.8% and 9.4%, respectively. In particular, there was a high frequency of SETBP1 mutation in aCML (19/60; 31.7%) and MDS/MPN unclassifiable (MDS/MPN, U; 20/240; 9.3%). SETBP1 mutated (SETBP1mut) patients showed significantly higher white blood cell counts and lower platelet counts and hemoglobin levels than SETBP1 wild-type patients. Cytomorphologic evaluation revealed a more dysplastic phenotype in SETBP1mut cases as compared with wild-type cases. We confirm a significant association of SETBP1mut with −7 and isochromosome i(17)(q10). Moreover, SETBP1mut were strongly associated with ASXL1 and CBL mutations (P<0.001 for both) and were mutually exclusive of JAK2 and TET2 mutations. In conclusion, SETBP1mut add an important new diagnostic marker for MDS/MPN and in particular for aCML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 4th edn. International Agency for Research on Cancer (IARC): Lyon, 2008.

    Google Scholar 

  2. Vardiman JW, Bennett JM, Bain B, Brunning RD, Thiele J . Atypical chronic myeloid leukaemia, BCR-ABL1 negative. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 4th edn. International Agency for Research on Cancer (IARC): Lyon, p 80–81 2008.

    Google Scholar 

  3. Fend F, Horn T, Koch I, Vela T, Orazi A . Atypical chronic myeloid leukemia as defined in the WHO classification is a JAK2 V617F negative neoplasm. Leuk Res 2008; 32: 1931–1935.

    Article  CAS  PubMed  Google Scholar 

  4. Bacher U, Schnittger S, Kern W, Weiss T, Haferlach T, Haferlach C . Distribution of cytogenetic abnormalities in myelodysplastic syndromes, Philadelphia negative myeloproliferative neoplasms, and the overlap MDS/MPN category. Ann Hematol 2009; 88: 1207–1213.

    Article  PubMed  Google Scholar 

  5. Jones AV, Kreil S, Zoi K, Waghorn K, Curtis C, Zhang L et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood 2005; 106: 2162–2168.

    Article  CAS  PubMed  Google Scholar 

  6. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397.

    Article  CAS  PubMed  Google Scholar 

  7. Tefferi A, Gilliland DG . JAK2 in myeloproliferative disorders is not just another kinase. Cell Cycle 2005; 4: 1053–1056.

    Article  CAS  PubMed  Google Scholar 

  8. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007; 356: 459–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006; 3: e270.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006; 108: 3472–3476.

    Article  CAS  PubMed  Google Scholar 

  11. Kohlmann A, Grossmann V, Klein HU, Schindela S, Weiss T, Kazak B et al. Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in 72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1. J Clin Oncol 2010; 28: 3858–3865.

    Article  CAS  PubMed  Google Scholar 

  12. Gelsi-Boyer V, Trouplin V, Adelaide J, Bonansea J, Cervera N, Carbuccia N et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol 2009; 145: 788–800.

    Article  CAS  PubMed  Google Scholar 

  13. Meggendorfer M, Roller A, Haferlach T, Eder C, Dicker F, Grossmann V et al. SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML). Blood 2012; 120: 3080–3088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brecqueville M, Rey J, Bertucci F, Coppin E, Finetti P, Carbuccia N et al. Mutation analysis of ASXL1, CBL, DNMT3A, IDH1, IDH2, JAK2, MPL, NF1, SF3B1, SUZ12, and TET2 in myeloproliferative neoplasms. Genes Chromosomes Cancer 2012; 51: 743–755.

    Article  CAS  PubMed  Google Scholar 

  15. Piazza R, Valletta S, Winkelmann N, Redaelli S, Spinelli R, Pirola A et al. Recurrent SETBP1 mutations in atypical chronic myeloid leukemia. Nat Genet 2013; 45: 18–24.

    Article  CAS  PubMed  Google Scholar 

  16. Hoischen A, van Bon BW, Gilissen C, Arts P, van LB, Steehouwer M et al. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat Genet 2010; 42: 483–485.

    Article  CAS  PubMed  Google Scholar 

  17. Cristobal I, Blanco FJ, Garcia-Orti L, Marcotegui N, Vicente C, Rifon J et al. SETBP1 overexpression is a novel leukemogenic mechanism that predicts adverse outcome in elderly patients with acute myeloid leukemia. Blood 2010; 115: 615–625.

    Article  CAS  PubMed  Google Scholar 

  18. Albano F, Anelli L, Zagaria A, Coccaro N, Casieri P, Minervini A et al. SETBP1 and miR_4319 dysregulation in primary myelofibrosis progression to acute myeloid leukemia. J Hematol Oncol 2012; 5: 48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Panagopoulos I, Kerndrup G, Carlsen N, Strombeck B, Isaksson M, Johansson B . Fusion of NUP98 and the SET binding protein 1 (SETBP1) gene in a paediatric acute T cell lymphoblastic leukaemia with t(11;18)(p15;q12). Br J Haematol 2007; 136: 294–296.

    Article  CAS  PubMed  Google Scholar 

  20. Shaffer LG, Tommerup N . ISCN 2013: An international System for Human Cytogenetic Nomenclature. Karger: Basel, New York, 2013.

    Google Scholar 

  21. Haferlach C, Rieder H, Lillington DM, Dastugue N, Hagemeijer A, Harbott J et al. Proposals for standardized protocols for cytogenetic analyses of acute leukemias, chronic lymphocytic leukemia, chronic myeloid leukemia, chronic myeloproliferative disorders, and myelodysplastic syndromes. Genes Chromosomes Cancer 2007; 46: 494–499.

    Article  CAS  PubMed  Google Scholar 

  22. Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002; 100: 59–66.

    Article  CAS  PubMed  Google Scholar 

  23. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7: 248–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumar P, Henikoff S, Ng PC . Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 2009; 4: 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  25. Schwarz JM, Rodelsperger C, Schuelke M, Seelow D . MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 2010; 7: 575–576.

    Article  CAS  PubMed  Google Scholar 

  26. Schnittger S, Bacher U, Kern W, Schroder M, Haferlach T, Schoch C . Report on two novel nucleotide exchanges in the JAK2 pseudokinase domain: D620E and E627E. Leukemia 2006; 20: 2195–2197.

    Article  CAS  PubMed  Google Scholar 

  27. Grand FH, Hidalgo-Curtis CE, Ernst T, Zoi K, Zoi C, McGuire C et al. Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood 2009; 113: 6182–6192.

    Article  CAS  PubMed  Google Scholar 

  28. Schnittger S, Eder C, Jeromin S, Alpermann T, Fasan A, Grossmann V et al. ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia 2013; 27: 82–91.

    Article  CAS  PubMed  Google Scholar 

  29. Schnittger S, Bacher U, Haferlach C, Geer T, Muller P, Mittermuller J et al. Detection of JAK2 exon 12 mutations in 15 patients with JAK2V617F negative polycythemia vera. Haematologica 2009; 94: 414–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schnittger S, Bacher U, Haferlach C, Dengler R, Krober A, Kern W et al. Detection of an MPLW515 mutation in a case with features of both essential thrombocythemia and refractory anemia with ringed sideroblasts and thrombocytosis. Leukemia 2008; 22: 453–455.

    Article  CAS  PubMed  Google Scholar 

  31. Grossmann V, Schnittger S, Kohlmann A, Eder C, Roller A, Dicker F et al. A novel hierarchical prognostic model of AML solely based on molecular mutations. Blood 2012; 120: 2963–2972.

    Article  CAS  PubMed  Google Scholar 

  32. Thiele J, Kwasnicka H, Orazi A, Tefferi A, Birgegard G . Polycythemia vera. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al. (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 4th edn. International Agency for Research on Cancer (IARC): Lyon, p 40–43 2008.

    Google Scholar 

  33. Tefferi A . Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia 2010; 24: 1128–1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jeromin S, Haferlach T, Grossmann V, Alpermann T, Kowarsch A, Haferlach C et al. High frequencies of SF3B1 and JAK2 mutations in refractory anemia with ring sideroblasts associated with marked thrombocytosis strengthen the assignment to the category of myelodysplastic/myeloproliferative neoplasms. Haematologica 2012; 98: e15–e17.

    Article  PubMed  Google Scholar 

  35. Damm F, Itzykson R, Kosmider O, Droin N, Renneville A, Chesnais V et al. SETBP1 mutations in 658 patients with myelodysplastic syndromes, chronic myelomonocytic leukemia and secondary acute myeloid leukemias. Leukemia 2013; e-pub ahead of print 5 February 2013; doi:10.1038/lieu.2013.35.

  36. Kanagal-Shamanna R, Bueso-Ramos CE, Barkoh B, Lu G, Wang S, Garcia-Manero G et al. Myeloid neoplasms with isolated isochromosome 17q represent a clinicopathologic entity associated with myelodysplastic/myeloproliferative features, a high risk of leukemic transformation, and wild-type TP53. Cancer 2012; 118: 2879–2888.

    Article  CAS  PubMed  Google Scholar 

  37. Schwaab J, Ernst T, Erben P, Rinke J, Schnittger S, Strobel P et al. Activating CBL mutations are associated with a distinct MDS/MPN phenotype. Ann Hematol 2012; 91: 1713–1720.

    Article  CAS  PubMed  Google Scholar 

  38. Schnittger S, Bacher U, Alpermann T, Reiter A, Ulke M, Dicker F et al. Use of CBL exon 8 and 9 mutations in diagnosis of myeloproliferative neoplasms and myelodysplastic/myeloproliferative disorders: an analysis of 636 cases. Haematologica 2012; 97: 1890–1894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sanada M, Suzuki T, Shih LY, Otsu M, Kato M, Yamazaki S et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature 2009; 460: 904–908.

    Article  CAS  PubMed  Google Scholar 

  40. Jankowska AM, Makishima H, Tiu RV, Szpurka H, Huang Y, Traina F et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood 2011; 118: 3932–3941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gelsi-Boyer V, Trouplin V, Roquain J, Adelaide J, Carbuccia N, Esterni B et al. ASXL1 mutation is associated with poor prognosis and acute transformation in chronic myelomonocytic leukaemia. Br J Haematol 2010; 151: 365–375.

    Article  CAS  PubMed  Google Scholar 

  42. Butler JS, Dent SY . The role of chromatin modifiers in normal and malignant hematopoiesis. Blood 2013; 121: 3076–3084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abdel-Wahab O, Adli M, Saunders L, Gao JG, Shih A, Pandey S et al. ASXL1 mutations promote myeloid transformation through inhibition of PRC2-mediated gene repression. Blood 2011; 118: 405a.

    Google Scholar 

  44. Oakley K, Han Y, Vishwakarma BA, Chu S, Bhatia R, Gudmundsson KO et al. Setbp1 promotes the self-renewal of murine myeloid progenitors via activation of Hoxa9 and Hoxa10. Blood 2012; 119: 6099–6108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Makishima H, Yoshida K, Nguyen N, Sanada M, Okuno Y, Ng KP et al. Somatic mutations in Schinzel-Giedion syndrome gene SETBP1 determine progression in myeloid malignancies. ASH Annual Meeting Abstracts 2012; 120: 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Schnittger.

Ethics declarations

Competing interests

TH, WK, CH and SS are part owners of the MLL Munich Leukemia Laboratory GmbH. MM, UB and TA are employed by the MLL Munich Leukemia Laboratory GmbH. CG-P declares no conflict of interest.

Additional information

Author contributions

MM investigated molecular mutations, analyzed the data and wrote the manuscript; UB contributed to cytomorphologic analysis and classification of cases and wrote the manuscript; TA collected and documented clinical data and compiled statistical analyses; CG-P originally detected SETBP1 gene mutations and discussed with us this study; WK was involved in statistical analyses; CH was responsible for cytogenetics; TH was responsible for cytomorphologic analysis and was involved in the collection of clinical data; SS was the principal investigator of the study and wrote the manuscript. All authors read and contributed to the final version of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meggendorfer, M., Bacher, U., Alpermann, T. et al. SETBP1 mutations occur in 9% of MDS/MPN and in 4% of MPN cases and are strongly associated with atypical CML, monosomy 7, isochromosome i(17)(q10), ASXL1 and CBL mutations. Leukemia 27, 1852–1860 (2013). https://doi.org/10.1038/leu.2013.133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.133

Keywords

This article is cited by

Search

Quick links