Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

Evidence of a role for CD44 and cell adhesion in mediating resistance to lenalidomide in multiple myeloma: therapeutic implications

Abstract

Resistance of myeloma to lenalidomide is an emerging clinical problem, and though it has been associated in part with activation of Wnt/β-catenin signaling, the mediators of this phenotype remained undefined. Lenalidomide-resistant models were found to overexpress the hyaluronan (HA)-binding protein CD44, a downstream Wnt/β-catenin transcriptional target. Consistent with a role of CD44 in cell adhesion-mediated drug resistance (CAM-DR), lenalidomide-resistant myeloma cells were more adhesive to bone marrow stroma and HA-coated plates. Blockade of CD44 with monoclonal antibodies, free HA or CD44 knockdown reduced adhesion and sensitized to lenalidomide. Wnt/β-catenin suppression by FH535 enhanced the activity of lenalidomide, as did interleukin-6 neutralization with siltuximab. Notably, all-trans retinoic acid (ATRA) downregulated total β-catenin, cell-surface and total CD44, reduced adhesion of lenalidomide-resistant myeloma cells and enhanced the activity of lenalidomide in a lenalidomide-resistant in vivo murine xenograft model. Finally, ATRA sensitized primary myeloma samples from patients that had relapsed and/or refractory disease after lenalidomide therapy to this immunomodulatory agent ex vivo. Taken together, our findings support the hypotheses that CD44 and CAM-DR contribute to lenalidomide resistance in multiple myeloma, that CD44 should be evaluated as a putative biomarker of sensitivity to lenalidomide, and that ATRA or other approaches that target CD44 may overcome clinical lenalidomide resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Laubach J, Richardson P, Anderson K . Multiple myeloma. Annu Rev Med 2011; 62: 249–264.

    Article  CAS  Google Scholar 

  2. Quach H, Kalff A, Spencer A . Lenalidomide in multiple myeloma: current status and future potential. Am J Hematol 2012; 87: 1089–1095.

    Article  CAS  Google Scholar 

  3. Bjorklund CC, Ma W, Wang ZQ, Davis RE, Kuhn DJ, Kornblau SM et al. Evidence of a role for activation of Wnt/beta-catenin signaling in the resistance of plasma cells to lenalidomide. J Biol Chem 2011; 286: 11009–11020.

    Article  CAS  Google Scholar 

  4. Wielenga VJ, Smits R, Korinek V, Smit L, Kielman M, Fodde R et al. Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol 1999; 154: 515–523.

    Article  CAS  Google Scholar 

  5. Ponta H, Sherman L, Herrlich PA . CD44: from adhesion molecules to signalling regulators. Nat Rev 2003; 4: 33–45.

    Article  CAS  Google Scholar 

  6. Ohashi R, Takahashi F, Cui R, Yoshioka M, Gu T, Sasaki S et al. Interaction between CD44 and hyaluronate induces chemoresistance in non-small cell lung cancer cell. Cancer Lett 2007; 252: 225–234.

    Article  CAS  Google Scholar 

  7. Hao JL, Cozzi PJ, Khatri A, Power CA, Li Y . CD147/EMMPRIN and CD44 are potential therapeutic targets for metastatic prostate cancer. Curr Cancer Drug Targets 2010; 10: 287–306.

    Article  CAS  Google Scholar 

  8. Van Phuc P, Nhan PL, Nhung TH, Tam NT, Hoang NM, Tue VG et al. Downregulation of CD44 reduces doxorubicin resistance of CD44CD24 breast cancer cells. Onco Targets Ther 2011; 4: 71–78.

    Article  Google Scholar 

  9. Ohwada C, Nakaseko C, Koizumi M, Takeuchi M, Ozawa S, Naito M et al. CD44 and hyaluronan engagement promotes dexamethasone resistance in human myeloma cells. Eur J Haematol 2008; 80: 245–250.

    Article  CAS  Google Scholar 

  10. Masson D, Denis MG, Denis M, Blanchard D, Loirat MJ, Cassagnau E et al. Soluble CD44: quantification and molecular repartition in plasma of patients with colorectal cancer. Br J Cancer 1999; 80: 1995–2000.

    Article  CAS  Google Scholar 

  11. Shah N, Cabanillas F, McIntyre B, Feng L, McLaughlin P, Rodriguez MA et al. Prognostic value of serum CD44, intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 levels in patients with indolent non-Hodgkin lymphomas. Leuk Lymphoma 2012; 53: 50–56.

    Article  CAS  Google Scholar 

  12. Krause DS, Spitzer TR, Stowell CP . The concentration of CD44 is increased in hematopoietic stem cell grafts of patients with acute myeloid leukemia, plasma cell myeloma, and non-Hodgkin lymphoma. Arch Pathol Lab Med 2010; 134: 1033–1038.

    CAS  Google Scholar 

  13. Dahl IM, Turesson I, Holmberg E, Lilja K . Serum hyaluronan in patients with multiple myeloma: correlation with survival and Ig concentration. Blood 1999; 93: 4144–4148.

    CAS  Google Scholar 

  14. Vincent T, Mechti N . IL-6 regulates CD44 cell surface expression on human myeloma cells. Leukemia 2004; 18: 967–975.

    Article  CAS  Google Scholar 

  15. Voorhees PM, Chen Q, Kuhn DJ, Small GW, Hunsucker SA, Strader JS et al. Inhibition of interleukin-6 signaling with CNTO 328 enhances the activity of bortezomib in preclinical models of multiple myeloma. Clin Cancer Res 2007; 13: 6469–6478.

    Article  CAS  Google Scholar 

  16. Voorhees PM, Chen Q, Small GW, Kuhn DJ, Hunsucker SA, Nemeth JA et al. Targeted inhibition of interleukin-6 with CNTO 328 sensitizes pre-clinical models of multiple myeloma to dexamethasone-mediated cell death. Br J Haematol 2009; 145: 481–490.

    Article  CAS  Google Scholar 

  17. Hunsucker SA, Magarotto V, Kuhn DJ, Kornblau SM, Wang M, Weber DM et al. Blockade of interleukin-6 signalling with siltuximab enhances melphalan cytotoxicity in preclinical models of multiple myeloma. Br J Haematol 2011; 152: 579–592.

    Article  CAS  Google Scholar 

  18. Handeli S, Simon JA . A small-molecule inhibitor of Tcf/beta-catenin signaling down-regulates PPARgamma and PPARdelta activities. Mol Cancer Ther 2008; 7: 521–529.

    Article  CAS  Google Scholar 

  19. Lu J, Zhang F, Zhao D, Hong L, Min J, Zhang L et al. ATRA-inhibited proliferation in glioma cells is associated with subcellular redistribution of beta-catenin via up-regulation of Axin. J Neurooncol 2008; 87: 271–277.

    Article  CAS  Google Scholar 

  20. Dillard AC, Lane MA . Retinol Increases beta-catenin-RXRalpha binding leading to the increased proteasomal degradation of beta-catenin and RXRalpha. Nutrition Cancer 2008; 60: 97–108.

    Article  CAS  Google Scholar 

  21. Lim YC, Kang HJ, Kim YS, Choi EC . All-trans-retinoic acid inhibits growth of head and neck cancer stem cells by suppression of Wnt/beta-catenin pathway. Eur J Cancer 2012; 48: 3310–3318.

    Article  CAS  Google Scholar 

  22. Liu J, Bi G, Wen P, Yang W, Ren X, Tang T et al. Down-regulation of CD44 contributes to the differentiation of HL-60 cells induced by ATRA or HMBA. Cell Mol Immunol 2007; 4: 59–63.

    CAS  Google Scholar 

  23. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008; 111: 2516–2520.

    Article  CAS  Google Scholar 

  24. Kastritis E, Zervas K, Symeonidis A, Terpos E, Delimbassi S, Anagnostopoulos N et al. Improved survival of patients with multiple myeloma after the introduction of novel agents and the applicability of the International Staging System (ISS): an analysis of the Greek Myeloma Study Group (GMSG). Leukemia 2009; 23: 1152–1157.

    Article  CAS  Google Scholar 

  25. Gay F, Hayman SR, Lacy MQ, Buadi F, Gertz MA, Kumar S et al. Lenalidomide plus dexamethasone versus thalidomide plus dexamethasone in newly diagnosed multiple myeloma: a comparative analysis of 411 patients. Blood 2010; 115: 1343–1350.

    Article  CAS  Google Scholar 

  26. Weber DM, Chen C, Niesvizky R, Wang M, Belch A, Stadtmauer EA et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med 2007; 357: 2133–2142.

    Article  CAS  Google Scholar 

  27. Dimopoulos M, Spencer A, Attal M, Prince HM, Harousseau JL, Dmoszynska A et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 2007; 357: 2123–2132.

    Article  CAS  Google Scholar 

  28. Richardson PG, Weller E, Jagannath S, Avigan DE, Alsina M, Schlossman RL et al. Multicenter, phase I, dose-escalation trial of lenalidomide plus bortezomib for relapsed and relapsed/refractory multiple myeloma. J Clin Oncol 2009; 27: 5713–5719.

    Article  CAS  Google Scholar 

  29. Rajkumar SV, Jacobus S, Callander NS, Fonseca R, Vesole DH, Williams ME et al. Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial. Lancet Oncol 2010; 11: 29–37.

    Article  CAS  Google Scholar 

  30. Richardson PG, Weller E, Lonial S, Jakubowiak AJ, Jagannath S, Raje NS et al. Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood 2010; 116: 679–686.

    Article  CAS  Google Scholar 

  31. Palumbo A, Hajek R, Delforge M, Kropff M, Petrucci MT, Catalano J et al. Continuous lenalidomide treatment for newly diagnosed multiple myeloma. N Engl J Med 2012; 366: 1759–1769.

    Article  CAS  Google Scholar 

  32. Attal M, Lauwers-Cances V, Marit G, Caillot D, Moreau P, Facon T et al. Lenalidomide maintenance after stem-cell transplantation for multiple myeloma. N Engl J Med 2012; 366: 1782–1791.

    Article  CAS  Google Scholar 

  33. McCarthy PL, Owzar K, Hofmeister CC, Hurd DD, Hassoun H, Richardson PG et al. Lenalidomide after stem-cell transplantation for multiple myeloma. N Engl J Med 2012; 366: 1770–1781.

    Article  CAS  Google Scholar 

  34. Dimopoulos MA, Chen C, Spencer A, Niesvizky R, Attal M, Stadtmauer EA et al. Long-term follow-up on overall survival from the MM-009 and MM-010 phase III trials of lenalidomide plus dexamethasone in patients with relapsed or refractory multiple myeloma. Leukemia 2009; 23: 2147–2152.

    Article  CAS  Google Scholar 

  35. Wang SJ, Bourguignon LYW . Role of hyaluronan-mediated CD44 signaling in head and neck squamous cell carcinoma progression and chemoresistance. Am J Pathol 2011; 178: 956–963.

    Article  CAS  Google Scholar 

  36. Toole BP . Hyaluronan-CD44 interactions in cancer: paradoxes and possibilities. Clin Cancer Res 2009; 15: 7462–7468.

    Article  CAS  Google Scholar 

  37. Toole BP, Slomiany MG . Hyaluronan CD44 and emmprin: partners in cancer cell chemoresistance. Drug Resist Updat 2008; 11: 110–121.

    Article  CAS  Google Scholar 

  38. Slomiany MG, Dai L, Bomar PA, Knackstedt TJ, Kranc DA, Tolliver L et al. Abrogating drug resistance in malignant peripheral nerve sheath tumors by disrupting hyaluronan-cd44 interactions with small hyaluronan oligosaccharides. Cancer Res 2009; 69: 4992–4998.

    Article  CAS  Google Scholar 

  39. Niesvizky R, Siegel DS, Busquets X, Nichols G, Muindi J, Warrell RP Jr et al. Hypercalcaemia and increased serum interleukin-6 levels induced by all-trans retinoic acid in patients with multiple myeloma. Br J Haematol 1995; 89: 217–218.

    Article  CAS  Google Scholar 

  40. Musto P, Sajeva MR, Sanpaolo G, D'Arena G, Scalzulli PR, Carotenuto M . All-trans retinoic acid in combination with alpha-interferon and dexamethasone for advanced multiple myeloma. Haematologica 1997; 82: 354–356.

    CAS  Google Scholar 

  41. Koskela K, Pelliniemi TT, Pulkki K, Remes K . Treatment of multiple myeloma with all-trans retinoic acid alone and in combination with chemotherapy: a phase I/II trial. Leuk Lymphoma 2004; 45: 749–754.

    Article  CAS  Google Scholar 

  42. Keats JJ, Chesi M, Egan JB, Garbitt VM, Palmer SE, Braggio E et al. Clonal competition with alternating dominance in multiple myeloma. Blood 2012; 120: 1067–1076.

    Article  CAS  Google Scholar 

  43. Egan JB, Shi CX, Tembe W, Christoforides A, Kurdoglu A, Sinari S et al. Whole-genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal tides. Blood 2012; 120: 1060–1066.

    Article  CAS  Google Scholar 

  44. Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y et al. Identification of a primary target of thalidomide teratogenicity. Science 2010; 327: 1345–1350.

    Article  CAS  Google Scholar 

  45. Zhu YX, Braggio E, Shi CX, Bruins LA, Schmidt JE, Van Wier S et al. Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood 2012; 118: 4771–4779.

    Article  Google Scholar 

  46. Lopez-Girona A, Mendy D, Ito T, Miller K, Gandhi AK, Kang J et al. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia 2012; 26: 2326–2335.

    Article  CAS  Google Scholar 

  47. Dimopoulos MA, Richardson PG, Brandenburg N, Yu Z, Weber DM, Niesvizky R et al. A review of second primary malignancy in patients with relapsed or refractory multiple myeloma treated with lenalidomide. Blood 2012; 119: 2764–2767.

    Article  CAS  Google Scholar 

  48. Thomas A, Mailankody S, Korde N, Kristinsson SY, Turesson I, Landgren O . Second malignancies after multiple myeloma: from 1960s to 2010s. Blood 2012; 119: 2731–2737.

    Article  CAS  Google Scholar 

  49. MacDonald BT, Tamai K, He X . Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009; 17: 9–26.

    Article  CAS  Google Scholar 

  50. Takahashi-Yanaga F, Kahn M . Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res 2010; 16: 3153–3162.

    Article  CAS  Google Scholar 

  51. Hertweck MK, Erdfelder F, Kreuzer KA . CD44 in hematological neoplasias. Ann Hematol 2011; 90: 493–508.

    Article  CAS  Google Scholar 

  52. Misra S, Heldin P, Hascall VC, Karamanos NK, Skandalis SS, Markwald RR et al. Hyaluronan-CD44 interactions as potential targets for cancer therapy. FEBS J 2012; 278: 1429–1443.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Flow Cytometry and Cellular Imaging Core Facility, and the Cell Line Characterization Core funded under the M. D. Anderson Cancer Center Support Grant (NCI no. CA16672). This work was supported by a Multiple Myeloma Research Foundation Senior Award (to RZO) and a Multiple Myeloma Research Foundation Research Fellow Award (to CCB). RZO would also like to acknowledge support from the National Cancer Institute in the form of the M. D. Anderson Cancer Center SPORE in Multiple Myeloma (P50 CA142509). We would also like to acknowledge support from the Brock Family Myeloma Research Fund.

Author Contributions

CCB conceived and performed the majority of the experiments, analyzed the data, prepared the figures and wrote the manuscript. RJJ assisted with some experiments and was involved in data analysis and manuscript preparation. VB and HYL provided statistical analyses of mouse xenograft modeling. QB facilitated access to primary samples and provided helpful discussions. IK performed in vivo experiments. HW generated lentiviral constructs. JJS, SKT, RA, MW and DMW facilitated access to primary samples. RZO provided research guidance, supervised the work herein, facilitated access to primary samples and proofed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Z Orlowski.

Ethics declarations

Competing interests

CCB was a post-doctoral fellow at M. D. Anderson when these studies were performed, but is currently an employee at Celgene Corporation and holds company stock options. RZO has served on advisory boards for Celgene Corporation, which markets lenalidomide, and also has received research funding and honoraria from Celgene. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjorklund, C., Baladandayuthapani, V., Lin, H. et al. Evidence of a role for CD44 and cell adhesion in mediating resistance to lenalidomide in multiple myeloma: therapeutic implications. Leukemia 28, 373–383 (2014). https://doi.org/10.1038/leu.2013.174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.174

Keywords

This article is cited by

Search

Quick links