Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

CXCR4-SERINE339 regulates cellular adhesion, retention and mobilization, and is a marker for poor prognosis in acute myeloid leukemia

Abstract

The CXCR4 receptor is a major regulator of hematopoietic cell migration. Overexpression of CXCR4 has been associated with poor prognosis in acute myelogenous leukemia (AML). We have previously shown that ligand-mediated phosphorylation of the Serine339 (CXCR4-S339) residue of the intracellular domain by PIM1 is implicated in surface re-expression of this receptor. Here, we report that phosphorylation of CXCR4-S339 in bone marrow (BM) biopsies correlated with poor prognosis in a cohort of AML patients. To functionally address the impact of CXCR4-S339 phosphorylation, we generated cell lines-expressing CXCR4 mutants that mimic constitutive phosphorylation (S339E) or abrogate phosphorylation (S339A). Whereas the expression of CXCR4 significantly increased, both CXCR4-S339E and the CXCR4-S339A mutants significantly reduced the BM homing and engraftment of Kasumi-1 AML cells in immunodeficient mice. In contrast, only expression of the CXCR4-S339E mutant increased the BM retention of the cells and resistance to cytarabine treatment, and impaired detachment capacity and AMD3100-induced mobilization of engrafted leukemic cells. These observations suggest that the poor prognosis in AML patients displaying CXCR4-S339 phosphorylation can be the consequence of an increased retention to the BM associated with an enhanced chemoresistance of leukemic cells. Therefore, CXCR4-S339 phosphorylation could serve as a novel prognostic marker in human AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 1999; 283: 845–848.

    Article  CAS  PubMed  Google Scholar 

  2. Tavor S, Petit I, Porozov S, Avigdor A, Dar A, Leider-Trejo L et al. CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res 2004; 64: 2817–2824.

    Article  CAS  PubMed  Google Scholar 

  3. Alkhatib G . The biology of CCR5 and CXCR4. Curr Opin HIV AIDS 2009; 4: 96–103.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Busillo JM, Benovic JL . Regulation of CXCR4 signaling. Biochim Biophys Acta 2007; 1768: 952–963.

    Article  CAS  PubMed  Google Scholar 

  5. Rombouts EJ, Pavic B, Lowenberg B, Ploemacher RE . Relation between CXCR-4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood 2004; 104: 550–557.

    Article  CAS  PubMed  Google Scholar 

  6. Spoo AC, Lubbert M, Wierda WG, Burger JA . CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood 2007; 109: 786–791.

    Article  CAS  PubMed  Google Scholar 

  7. Voermans C, van Heese WP, de Jong I, Gerritsen WR, van Der Schoot CE . Migratory behavior of leukemic cells from acute myeloid leukemia patients. Leukemia 2002; 16: 650–657.

    Article  CAS  PubMed  Google Scholar 

  8. Lefkowitz RJ . G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization. J Biol Chem 1998; 273: 18677–18680.

    Article  CAS  PubMed  Google Scholar 

  9. Calandra G, Bridger G, Fricker S . CXCR4 in clinical hematology. Curr Top Microbiol Immunol 2010; 341: 173–191.

    CAS  PubMed  Google Scholar 

  10. Guinamard R, Signoret N, Ishiai M, Marsh M, Kurosaki T, Ravetch JV . B cell antigen receptor engagement inhibits stromal cell-derived factor (SDF)-1alpha chemotaxis and promotes protein kinase C (PKC)-induced internalization of CXCR4. J Exp Med 1999; 189: 1461–1466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Minina S, Reichman-Fried M, Raz E . Control of receptor internalization, signaling level, and precise arrival at the target in guided cell migration. Curr Biol 2007; 17: 1164–1172.

    Article  CAS  PubMed  Google Scholar 

  12. Orsini MJ, Parent JL, Mundell SJ, Marchese A, Benovic JL . Trafficking of the HIV coreceptor CXCR4. Role of arrestins and identification of residues in the c-terminal tail that mediate receptor internalization. J Biol Chem 1999; 274: 31076–31086.

    Article  CAS  PubMed  Google Scholar 

  13. Busillo JM, Armando S, Sengupta R, Meucci O, Bouvier M, Benovic JL . Site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases and results in differential modulation of CXCR4 signaling. J Biol Chem 2010; 285: 7805–7817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grundler R, Brault L, Gasser C, Bullock AN, Dechow T, Woetzel S et al. Dissection of PIM serine/threonine kinases in FLT3-ITD-induced leukemogenesis reveals PIM1 as regulator of CXCL12-CXCR4-mediated homing and migration. J Exp Med 2009; 206: 1957–1970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brault L, Menter T, Obermann EC, Knapp S, Thommen S, Schwaller J et al. PIM kinases are progression markers and emerging therapeutic targets in diffuse large B-cell lymphoma. Br J Cancer 2012; 107: 491–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Amendola M, Venneri MA, Biffi A, Vigna E, Naldini L . Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 2005; 23: 108–116.

    Article  CAS  PubMed  Google Scholar 

  17. Liu T, Jankovic D, Brault L, Ehret S, Baty F, Stavropoulou V et al. Functional characterization of high levels of meningioma 1 as collaborating oncogene in acute leukemia. Leukemia 2010; 24: 601–612.

    Article  CAS  PubMed  Google Scholar 

  18. Shaposhnikov VL . [Distribution of the bone marrow cells in the skeleton of mice]. Biull Eksp Biol Med 1979; 87: 483–485.

    Article  CAS  PubMed  Google Scholar 

  19. Ng KP, Ebrahem Q, Negrotto S, Mahfouz RZ, Link KA, Hu Z et al. p53 independent epigenetic-differentiation treatment in xenotransplant models of acute myeloid leukemia. Leukemia 2011; 25: 1739–1750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zeng Z, Shi YX, Samudio IJ, Wang RY, Ling X, Frolova O et al. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 2009; 113: 6215–6224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Obermann EC, Arber C, Jotterand M, Tichelli A, Hirschmann P, Tzankov A . Expression of pSTAT5 predicts FLT3 internal tandem duplications in acute myeloid leukemia. Ann Hematol 2010; 89: 663–669.

    Article  CAS  PubMed  Google Scholar 

  22. Tzankov A, Strasser U, Dirnhofer S, Menter T, Arber C, Jotterand M et al. In situ RHAMM protein expression in acute myeloid leukemia blasts suggests poor overall survival. Ann Hematol 2011; 90: 901–909.

    Article  CAS  PubMed  Google Scholar 

  23. Hicke L, Zanolari B, Riezman H . Cytoplasmic tail phosphorylation of the alpha-factor receptor is required for its ubiquitination and internalization. J Cell Biol 1998; 141: 349–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pitcher C, Honing S, Fingerhut A, Bowers K, Marsh M . Cluster of differentiation antigen 4 (CD4) endocytosis and adaptor complex binding require activation of the CD4 endocytosis signal by serine phosphorylation. Mol Biol Cell 1999; 10: 677–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mohle R, Bautz F, Rafii S, Moore MA, Brugger W, Kanz L . The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 1998; 91: 4523–4530.

    CAS  PubMed  Google Scholar 

  26. Roland J, Murphy BJ, Ahr B, Robert-Hebmann V, Delauzun V, Nye KE et al. Role of the intracellular domains of CXCR4 in SDF-1-mediated signaling. Blood 2003; 101: 399–406.

    Article  CAS  PubMed  Google Scholar 

  27. Rosu-Myles M, Gallacher L, Murdoch B, Hess DA, Keeney M, Kelvin D et al. The human hematopoietic stem cell compartment is heterogeneous for CXCR4 expression. Proc Natl Acad Sci USA 2000; 97: 14626–14631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2009; 2: ra81.

    Article  PubMed  Google Scholar 

  29. Macanas-Pirard P, Leisewitz A, Broekhuizen R, Cautivo K, Barriga FM, Leisewitz F et al. Bone marrow stromal cells modulate mouse ENT1 activity and protect leukemia cells from cytarabine induced apoptosis. PLoS One 2012; 7: e37203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Konoplev S, Rassidakis GZ, Estey E, Kantarjian H, Liakou CI, Huang X et al. Overexpression of CXCR4 predicts adverse overall and event-free survival in patients with unmutated FLT3 acute myeloid leukemia with normal karyotype. Cancer 2007; 109: 1152–1156.

    Article  CAS  PubMed  Google Scholar 

  31. Tavernier-Tardy E, Cornillon J, Campos L, Flandrin P, Duval A, Nadal N et al. Prognostic value of CXCR4 and FAK expression in acute myelogenous leukemia. Leuk Res 2009; 33: 764–768.

    Article  CAS  PubMed  Google Scholar 

  32. Monaco G, Konopleva M, Munsell M, Leysath C, Wang RY, Jackson CE et al. Engraftment of acute myeloid leukemia in NOD/SCID mice is independent of CXCR4 and predicts poor patient survival. Stem Cells 2004; 22: 188–201.

    Article  PubMed  Google Scholar 

  33. Woerner BM, Warrington NM, Kung AL, Perry A, Rubin JB . Widespread CXCR4 activation in astrocytomas revealed by phospho-CXCR4-specific antibodies. Cancer Res 2005; 65: 11392–11399.

    Article  CAS  PubMed  Google Scholar 

  34. Konoplev S, Jorgensen JL, Thomas DA, Lin E, Burger J, Kantarjian HM et al. Phosphorylated CXCR4 is associated with poor survival in adults with B-acute lymphoblastic leukemia. Cancer 2011; 117: 31.

    Article  Google Scholar 

  35. Kawai T, Choi U, Whiting-Theobald NL, Linton GF, Brenner S, Sechler JM et al. Enhanced function with decreased internalization of carboxy-terminus truncated CXCR4 responsible for WHIM syndrome. Exp Hematol 2005; 33: 460–468.

    Article  CAS  PubMed  Google Scholar 

  36. Delgado-Martin C, Escribano C, Pablos JL, Riol-Blanco L, Rodriguez-Fernandez JL . Chemokine CXCL12 uses CXCR4 and a signaling core formed by bifunctional Akt, extracellular signal-regulated kinase (ERK)1/2, and mammalian target of rapamycin complex 1 (mTORC1) proteins to control chemotaxis and survival simultaneously in mature dendritic cells. J Biol Chem 2011; 286: 37222–37236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ryu CH, Park SA, Kim SM, Lim JY, Jeong CH, Jun JA et al. Migration of human umbilical cord blood mesenchymal stem cells mediated by stromal cell-derived factor-1/CXCR4 axis via Akt, ERK, and p38 signal transduction pathways. Biochem Biophys Res Commun 2010; 398: 105–110.

    Article  CAS  PubMed  Google Scholar 

  38. Kawai T, Choi U, Cardwell L, DeRavin SS, Naumann N, Whiting-Theobald NL et al. WHIM syndrome myelokathexis reproduced in the NOD/SCID mouse xenotransplant model engrafted with healthy human stem cells transduced with C-terminus-truncated CXCR4. Blood 2007; 109: 78–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen Y, Jacamo R, Konopleva M, Garzon R, Croce C, Andreeff M . CXCR4 downregulation of let-7a drives chemoresistance in acute myeloid leukemia. J Clin Invest 2013; 123: 2395–2407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nervi B, Ramirez P, Rettig MP, Uy GL, Holt MS, Ritchey JK et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 2009; 113: 6206–6214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Uy GL, Rettig MP, Motabi IH, McFarland K, Trinkaus KM, Hladnik LM et al. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood 2012; 119: 3917–3924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Sarah Thommen and Sabine Juge for technical help, Susan Treves for advice and Emmanuel Traunecker for cell sorting. We would like also to thank Oliver Pertz for fruitful discussion, Fawzia Louache, Cristina Lo Celso and Radek Skoda for critically reading of the manuscript. This work was supported by the Gertrude Von Meissner Foundation (Basel), and grants from SNF (31003A-116587) and ONCOSUISSE (OCS-01830-02-2006) to JS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Schwaller.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brault, L., Rovó, A., Decker, S. et al. CXCR4-SERINE339 regulates cellular adhesion, retention and mobilization, and is a marker for poor prognosis in acute myeloid leukemia. Leukemia 28, 566–576 (2014). https://doi.org/10.1038/leu.2013.201

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.201

Keywords

This article is cited by

Search

Quick links