Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunology

Generation of multi-leukemia antigen-specific T cells to enhance the graft-versus-leukemia effect after allogeneic stem cell transplant

Abstract

Adoptive immunotherapy with ex vivo expanded T cells is a promising approach to prevent or treat leukemia. Myeloid leukemias express tumor-associated antigens (TAA) that induce antigen-specific cytotoxic T lymphocyte (CTL) responses in healthy individuals. We explored the feasibility of generating TAA-specific CTLs from stem cell donors of patients with myeloid leukemia to enhance the graft-versus-leukemia effect after stem cell transplantation. CTL lines were manufactured from peripheral blood of 10 healthy donors by stimulation with 15mer peptide libraries of five TAA (proteinase 3 (Pr3), preferentially expressed antigen in melanoma, Wilms tumor gene 1 (WT1), human neutrophil elastase (NE) and melanoma-associated antigen A3) known to be expressed in myeloid leukemias. All CTL lines responded to the mix of five TAA and were multi-specific as assessed by interferon-γ enzyme-linked immunospot. Although donors showed individual patterns of antigen recognition, all responded comparably to the TAAmix. Immunogenic peptides of WT1, Pr3 or NE could be identified by epitope mapping in all donor CTL lines. In vitro experiments showed recognition of partially human leukocyte antigen (HLA)-matched myeloid leukemia blasts. These findings support the development of a single clinical grade multi-tumor antigen-specific T-cell product from the stem cell source, capable of broad reactivity against myeloid malignancies for use in donor-recipient pairs without limitation to a certain HLA-type.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Barrett AJ . Understanding and harnessing the graft-versus-leukaemia effect. Br J Haematol 2008; 142: 877–888.

    Article  CAS  PubMed  Google Scholar 

  2. Montagna D, Maccario R, Locatelli F, Montini E, Pagani S, Bonetti F et al. Emergence of antitumor cytolytic T cells is associated with maintenance of hematologic remission in children with acute myeloid leukemia. Blood 2006; 108: 3843–3850.

    Article  CAS  PubMed  Google Scholar 

  3. Burnett AK, . Knapper S. Acute Myeloid Leukemia. In: Treleaven J, Barrett AJ, eds. Haematopoietic Stem Cell Transplantation in Clinical Practice. Elsevier, 2009.

    Google Scholar 

  4. Porter DL, June CH . T-cell reconstitution and expansion after hematopoietic stem cell transplantation: T' it up!. Bone Marrow Transplant 2005; 35: 935–942.

    Article  CAS  PubMed  Google Scholar 

  5. Rezvani K, Barrett AJ . Characterizing and optimizing immune responses to leukaemia antigens after allogeneic stem cell transplantation. Best Pract Res Clin Haematol 2008; 21: 437–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fujiki F, Oka Y, Tsuboi A, Kawakami M, Kawakatsu M, Nakajima H et al. Identification and characterization of a WT1 (Wilms Tumor Gene) protein-derived HLA-DRB1*0405-restricted 16-mer helper peptide that promotes the induction and activation of WT1-specific cytotoxic T lymphocytes. J Immunother 2007; 30: 282–293.

    Article  CAS  PubMed  Google Scholar 

  7. Weber G, Karbach J, Kuci S, Kreyenberg H, Willasch A, Koscielniak E et al. WT1 peptide-specific T cells generated from peripheral blood of healthy donors: possible implications for adoptive immunotherapy after allogeneic stem cell transplantation. Leukemia 2009; 23: 1634–1642.

    Article  CAS  PubMed  Google Scholar 

  8. Maslak PG, Dao T, Krug LM, Chanel S, Korontsvit T, Zakhaleva V et al. Vaccination with synthetic analog peptides derived from WT1 oncoprotein induces T-cell responses in patients with complete remission from acute myeloid leukemia. Blood 2010; 116: 171–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rezvani K, Yong AS, Mielke S, Savani BN, Musse L, Superata J et al. Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood 2008; 111: 236–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rezvani K, Yong AS, Savani BN, Mielke S, Keyvanfar K, Gostick E et al. Graft-versus-leukemia effects associated with detectable Wilms tumor-1 specific T lymphocytes after allogeneic stem-cell transplantation for acute lymphoblastic leukemia. Blood 2007; 110: 1924–1932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rezvani K, Price DA, Brenchley JM, Kilical Y, Gostick E, Sconocchia G et al. Transfer of PR1-specific T-cell clones from donor to recipient by stem cell transplantation and association with GvL activity. Cytotherapy 2007; 9: 245–251.

    Article  CAS  PubMed  Google Scholar 

  12. Qazilbash M, Wieder E, Rios R, Lu S, Kant S, Giralt S et al. Vaccination with the PR1 leukemia-associated antigen can induce complete remission in patients with myeloid leukemia. ASH Annu Meet Abstr 2004; 104: 259.

    Google Scholar 

  13. Fujiwara H, El OF, Grube M, Price DA, Rezvani K, Gostick E et al. Identification and in vitro expansion of CD4+ and CD8+ T cells specific for human neutrophil elastase. Blood 2004; 103: 3076–3083.

    Article  CAS  PubMed  Google Scholar 

  14. Rezvani K, Yong AS, Mielke S, Savani BN, Jafarpour B, Eniafe R et al. Lymphodepletion is permissive to the development of spontaneous T-cell responses to the self-antigen PR1 early after allogeneic stem cell transplantation and in patients with acute myeloid leukemia undergoing WT1 peptide vaccination following chemotherapy. Cancer Immunol Immunother 2012; 61: 1125–1136.

    Article  CAS  PubMed  Google Scholar 

  15. Rezvani K, Yong AS, Tawab A, Jafarpour B, Eniafe R, Mielke S et al. Ex-vivo characterization of polyclonal memory CD8+ T-cell responses to PRAME-specific peptides in patients with acute lymphoblastic leukemia and acute and chronic myeloid leukemia. Blood 2009; 113: 2245–2255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goodyear O, Agathanggelou A, Novitzky-Basso I, Siddique S, McSkeane T, Ryan G et al. Induction of a CD8+ T-cell response to the MAGE cancer testis antigen by combined treatment with azacitidine and sodium valproate in patients with acute myeloid leukemia and myelodysplasia. Blood 2010; 116: 1908–1918.

    Article  CAS  PubMed  Google Scholar 

  17. Rezvani K, Brenchley JM, Price DA, Kilical Y, Gostick E, Sewell AK et al. T-cell responses directed against multiple HLA-A*0201-restricted epitopes derived from Wilms' tumor 1 protein in patients with leukemia and healthy donors: identification, quantification, and characterization. Clin Cancer Res 2005; 11 (Pt 1): 8799–8807.

    Article  CAS  PubMed  Google Scholar 

  18. Schmitt M, Casalegno-Garduno R, Xu X, Schmitt A . Peptide vaccines for patients with acute myeloid leukemia. Expert Rev Vaccines 2009; 8: 1415–1425.

    Article  CAS  PubMed  Google Scholar 

  19. Bleakley M, Riddell SR . Exploiting T cells specific for human minor histocompatibility antigens for therapy of leukemia. Immunol Cell Biol 2011; 89: 396–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang YZ, Barrett J . The allogeneic CD4+ T-cell-mediated graft-versus-leukemia effect. Leuk Lymphoma 1997; 28: 33–42.

    Article  CAS  PubMed  Google Scholar 

  21. Gerdemann U, Katari U, Christin AS, Cruz CR, Tripic T, Rousseau A et al. Cytotoxic T lymphocytes simultaneously targeting multiple tumor-associated antigens to treat EBV negative lymphoma. Mol Ther 2011; 19: 2258–2268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoffmeister B, Kiecker F, Tesfa L, Volk HD, Picker LJ, Kern F . Mapping T cell epitopes by flow cytometry. Methods 2003; 29: 270–281.

    Article  CAS  PubMed  Google Scholar 

  23. Feuchtinger T, Matthes-Martin S, Richard C, Lion T, Fuhrer M, Hamprecht K et al. Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol 2006; 134: 64–76.

    Article  PubMed  Google Scholar 

  24. Feuchtinger T, Opherk K, Bethge WA, Topp MS, Schuster FR, Weissinger EM et al. Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood 2010; 116: 4360–4367.

    Article  CAS  PubMed  Google Scholar 

  25. Leen AM, Myers GD, Sili U, Huls MH, Weiss H, Leung KS et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med 2006; 12: 1160–1166.

    Article  CAS  PubMed  Google Scholar 

  26. Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 1995; 86: 2041–2050.

    CAS  PubMed  Google Scholar 

  27. Kolb HJ, Schmid C, Barrett AJ, Schendel DJ . Graft-versus-leukemia reactions in allogeneic chimeras. Blood 2004; 103: 767–776.

    Article  CAS  PubMed  Google Scholar 

  28. Bornhauser M, Thiede C, Platzbecker U, Kiani A, Oelschlaegel U, Babatz J et al. Prophylactic transfer of BCR-ABL-, PR1-, and WT1-reactive donor T cells after T cell-depleted allogeneic hematopoietic cell transplantation in patients with chronic myeloid leukemia. Blood 2011; 117: 7174–7184.

    Article  PubMed  Google Scholar 

  29. Leen AM, Christin A, Myers GD, Liu H, Cruz CR, Hanley PJ et al. Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein-Barr virus infections after haploidentical and matched unrelated stem cell transplantation. Blood 2009; 114: 4283–4292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vera JF, Brenner LJ, Gerdemann U, Ngo MC, Sili U, Liu H et al. Accelerated production of antigen-specific T cells for preclinical and clinical applications using gas-permeable rapid expansion cultureware (G-Rex). J Immunother 2010; 33: 305–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hanley PJ, Cruz CR, Savoldo B, Leen AM, Stanojevic M, Khalil M et al. Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood 2009; 114: 1958–1967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gerdemann U, Keirnan JM, Katari UL, Yanagisawa R, Christin AS, Huye LE et al. Rapidly generated multivirus-specific cytotoxic T lymphocytes for the prophylaxis and treatment of viral infections. Mol Ther 2012; 20: 1622–1632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bollard CM, Gottschalk S, Helen HM, Leen AM, Gee AP, Rooney CM . Good manufacturing practice-grade cytotoxic T lymphocytes specific for latent membrane proteins (LMP)-1 and LMP2 for patients with Epstein-Barr virus-associated lymphoma. Cytotherapy 2011; 13: 518–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bollard CM, Gottschalk S, Leen AM, Weiss H, Straathof KC, Carrum G et al. Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer. Blood 2007; 110: 2838–2845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wolfl M, Kuball J, Ho WY, Nguyen H, Manley TJ, Bleakley M et al. Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood 2007; 110: 201–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gottschalk S, Ng CY, Perez M, Smith CA, Sample C, Brenner MK et al. An Epstein-Barr virus deletion mutant associated with fatal lymphoproliferative disease unresponsive to therapy with virus-specific CTLs. Blood 2001; 97: 835–843.

    Article  CAS  PubMed  Google Scholar 

  37. Ma Q, Wang C, Jones D, Quintanilla KE, Li D, Wang Y et al. Adoptive transfer of PR1 cytotoxic T lymphocytes associated with reduced leukemia burden in a mouse acute myeloid leukemia xenograft model. Cytotherapy 2010; 12: 1056–1062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ochi T, Fujiwara H, Suemori K, Azuma T, Yakushijin Y, Hato T et al. Aurora-A kinase: a novel target of cellular immunotherapy for leukemia. Blood 2009; 113: 66–74.

    Article  CAS  PubMed  Google Scholar 

  39. Yong AS, Stephens N, Weber G, Li Y, Savani BN, Eniafe R et al. Improved outcome following allogeneic stem cell transplantation in chronic myeloid leukemia is associated with higher expression of BMI-1 and immune responses to BMI-1 protein. Leukemia 2011; 25: 629–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schmitt M, Schmitt A, Rojewski MT, Chen J, Giannopoulos K, Fei F et al. RHAMM-R3 peptide vaccination in patients with acute myeloid leukemia, myelodysplastic syndrome, and multiple myeloma elicits immunologic and clinical responses. Blood 2008; 111: 1357–1365.

    Article  CAS  PubMed  Google Scholar 

  41. Niens M, van den BA, Diepstra A, Nolte IM, van der SG, Gallagher A et al. The human leukocyte antigen class I region is associated with EBV-positive Hodgkin’s lymphoma: HLA-A and HLA complex group 9 are putative candidate genes. Cancer Epidemiol Biomarkers Prev 2006; 15: 2280–2284.

    Article  CAS  PubMed  Google Scholar 

  42. Oka Y, Elisseeva OA, Tsuboi A, Ogawa H, Tamaki H, Li H et al. Human cytotoxic T-lymphocyte responses specific for peptides of the wild-type Wilms' tumor gene (WT1 ) product. Immunogenetics 2000; 51: 99–107.

    Article  CAS  PubMed  Google Scholar 

  43. Doubrovina E, Carpenter T, Pankov D, Selvakumar A, Hasan A, O'Reilly RJ . Mapping of novel peptides of WT-1 and presenting HLA alleles that induce epitope-specific HLA-restricted T cells with cytotoxic activity against WT-1(+) leukemias. Blood 2012; 120: 1633–1646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Knights AJ, Zaniou A, Rees RC, Pawelec G, Muller L . Prediction of an HLA-DR-binding peptide derived from Wilms' tumour 1 protein and demonstration of in vitro immunogenicity of WT1(124-138)-pulsed dendritic cells generated according to an optimised protocol. Cancer Immunol Immunother 2002; 51: 271–281.

    Article  CAS  PubMed  Google Scholar 

  45. Lacey SF, La RC, Kaltcheva T, Srivastava T, Seidel A, Zhou W et al. Characterization of immunologic properties of a second HLA-A2 epitope from a granule protease in CML patients and HLA-A2 transgenic mice. Blood 2011; 118: 2159–2169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Piesche M, Hildebrandt Y, Chapuy B, Wulf GG, Trumper L, Schroers R . Characterization of HLA-DR-restricted T-cell epitopes derived from human proteinase 3. Vaccine 2009; 27: 4718–4723.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in parts by NIH grant 1P01CA148600-01 and CPRIT Grant RP100484. CMB was also supported by the career development award from the Leukemia Lymphoma Society and an award from the Gillson Longenbaugh Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C M Bollard.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, G., Gerdemann, U., Caruana, I. et al. Generation of multi-leukemia antigen-specific T cells to enhance the graft-versus-leukemia effect after allogeneic stem cell transplant. Leukemia 27, 1538–1547 (2013). https://doi.org/10.1038/leu.2013.66

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.66

Keywords

This article is cited by

Search

Quick links