Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Disruption of the MYC-miRNA-EZH2 loop to suppress aggressive B-cell lymphoma survival and clonogenicity

Abstract

c-MYC (hereafter MYC) overexpression has been recognized in aggressive B-cell lymphomas and linked to adverse prognosis. MYC activation results in widespread repression of micro-RNA (miRNA) expression and associated with lymphoma aggressive progression. Our recent study identified a MYC-miRNA-EZH2 feed-forward loop linking overexpression of MYC, EZH2 and miRNA repression. Here, using a novel small-molecule BET bromodomain inhibitor, JQ1, and the EZH2 inhibitor, DZNep, we demonstrated that combined treatment of JQ1 and DZNep cooperatively disrupted MYC activation, resulting in a greater restoration of miR-26a expression and synergistically suppressed lymphoma growth and clonogenicity in aggressive lymphoma cells. Furthermore, CHIP assay demonstrated that MYC recruited EZH2 to miR-26a promoter and cooperatively repressed miR-26a expression in aggressive lymphoma cell lines, as well as primary lymphoma cells. Loss- or gain-of-function approaches revealed that miR-26a functioned as a tumor suppressor miRNA and mediated the combinatorial effects of JQ1 and DZNep. These findings represent a novel promising approach for silencing MYC-miRNA-EZH2 amplification loop for combinatorial therapy of aggressive B-cell lymphomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Slack GW, Gascoyne RD . MYC and aggressive B-cell lymphomas. Adv Anat Pathol 2011; 18: 219–228.

    Article  Google Scholar 

  2. Craig VJ, Cogliatti SB, Imig J, Renner C, Neuenschwander S, Rehrauer H et al. Myc-mediated repression of microRNA-34a promotes high-grade transformation of B-cell lymphoma by dysregulation of FoxP1. Blood 2011; 117: 6227–6236.

    Article  CAS  Google Scholar 

  3. Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 1985; 318: 533–538.

    Article  CAS  Google Scholar 

  4. Lovec H, Grzeschiczek A, Kowalski MB, Moroy T . Cyclin D1/bcl-1 cooperates with myc genes in the generation of B-cell lymphoma in transgenic mice. EMBO J 1994; 13: 3487–3495.

    Article  CAS  Google Scholar 

  5. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435: 828–833.

    Article  CAS  Google Scholar 

  6. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 2008; 40: 43–50.

    Article  CAS  Google Scholar 

  7. Zhang X, Chen X, Lin J, Lwin T, Wright G, Moscinski LC et al. Myc represses miR-15a/miR-16-1 expression through recruitment of HDAC3 in mantle cell and other non-Hodgkin B-cell lymphomas. Oncogene 2012; 31: 3002–3008.

    Article  CAS  Google Scholar 

  8. Zhang X, Zhao X, Fiskus W, Lin J, Lwin T, Rao R et al. Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-Cell lymphomas. Cancer Cell 2012; 22: 506–523.

    Article  CAS  Google Scholar 

  9. Radulovic V, de Haan G, Klauke K . Polycomb-group proteins in hematopoietic stem cell regulation and hematopoietic neoplasms. Leukemia 2013; 27: 523–533.

    Article  CAS  Google Scholar 

  10. Popovic R, Licht JD . Emerging epigenetic targets and therapies in cancer medicine. Cancer Discov 2012; 2: 405–413.

    Article  CAS  Google Scholar 

  11. Velichutina I, Shaknovich R, Geng H, Johnson NA, Gascoyne RD, Melnick AM et al. EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood 2010; 116: 5247–5255.

    Article  CAS  Google Scholar 

  12. Lohr JG, Stojanov P, Lawrence MS, Auclair D, Chapuy B, Sougnez C et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci USA 2012; 109: 3879–3884.

    Article  CAS  Google Scholar 

  13. Visser HP, Gunster MJ, Kluin-Nelemans HC, Manders EM, Raaphorst FM, Meijer CJ et al. The Polycomb group protein EZH2 is upregulated in proliferating, cultured human mantle cell lymphoma. Br J Haematol 2001; 112: 950–958.

    Article  CAS  Google Scholar 

  14. Martin-Perez D, Sanchez E, Maestre L, Suela J, Vargiu P, Di Lisio L et al. Deregulated expression of the polycomb-group protein SUZ12 target genes characterizes mantle cell lymphoma. Am J Pathol 2010; 177: 930–942.

    Article  CAS  Google Scholar 

  15. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O et al. Selective inhibition of BET bromodomains. Nature 2010; 468: 1067–1073.

    Article  CAS  Google Scholar 

  16. Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA 2011; 108: 16669–16674.

    Article  CAS  Google Scholar 

  17. Lin J, Lwin T, Zhao JJ, Tam W, Choi YS, Moscinski LC et al. Follicular dendritic cell-induced microRNA-mediated upregulation of PRDM1 and downregulation of BCL-6 in non-Hodgkin's B-cell lymphomas. Leukemia 2011; 25: 145–152.

    Article  CAS  Google Scholar 

  18. Schuhmacher M, Staege MS, Pajic A, Polack A, Weidle UH, Bornkamm GW et al. Control of cell growth by c-Myc in the absence of cell division. Curr Biol 1999; 9: 1255–1258.

    Article  CAS  Google Scholar 

  19. Lwin T, Lin J, Choi YS, Zhang X, Moscinski LC, Wright KL et al. Follicular dendritic cell-dependent drug resistance of non-Hodgkin lymphoma involves cell adhesion-mediated Bim down-regulation through induction of microRNA-181a. Blood 2010; 116: 5228–5236.

    Article  CAS  Google Scholar 

  20. Dang CV . MYC on the path to cancer. Cell 2012; 149: 22–35.

    Article  CAS  Google Scholar 

  21. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146: 904–917.

    Article  CAS  Google Scholar 

  22. Pajic A, Spitkovsky D, Christoph B, Kempkes B, Schuhmacher M, Staege MS et al. Cell cycle activation by c-myc in a burkitt lymphoma model cell line. Int J Cancer 2000; 87: 787–793.

    Article  CAS  Google Scholar 

  23. Di Lisio L, Gomez-Lopez G, Sanchez-Beato M, Gomez-Abad C, Rodriguez ME, Villuendas R et al. Mantle cell lymphoma: transcriptional regulation by microRNAs. Leukemia 2010; 24: 1335–1342.

    Article  CAS  Google Scholar 

  24. Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TF et al. MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 2008; 112: 4202–4212.

    Article  CAS  Google Scholar 

  25. Lu J, He ML, Wang L, Chen Y, Liu X, Dong Q et al. MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res 2011; 71: 225–233.

    Article  CAS  Google Scholar 

  26. Alajez NM, Shi W, Hui AB, Bruce J, Lenarduzzi M, Ito E et al. Enhancer of Zeste homolog 2 (EZH2) is overexpressed in recurrent nasopharyngeal carcinoma and is regulated by miR-26a, miR-101, and miR-98. Cell Death Dis 2010; 1: e85.

    Article  CAS  Google Scholar 

  27. Miranda TB, Cortez CC, Yoo CB, Liang G, Abe M, Kelly TK et al. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther 2009; 8: 1579–1588.

    Article  CAS  Google Scholar 

  28. Bodor C, O'Riain C, Wrench D, Matthews J, Iyengar S, Tayyib H et al. EZH2 Y641 mutations in follicular lymphoma. Leukemia 2011; 25: 726–729.

    Article  CAS  Google Scholar 

  29. Qi W, Chan H, Teng L, Li L, Chuai S, Zhang R et al. Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci USA 2012; 109: 21360–21365.

    Article  CAS  Google Scholar 

  30. Knutson SK, Wigle TJ, Warholic NM, Sneeringer CJ, Allain CJ, Klaus CR et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 2012; 8: 890–896.

    Article  CAS  Google Scholar 

  31. McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 2012; 492: 108–112.

    Article  CAS  Google Scholar 

  32. Pasqualucci L, Trifonov V, Fabbri G, Ma J, Rossi D, Chiarenza A et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet 2011; 43: 830–837.

    Article  CAS  Google Scholar 

  33. Ryan RJ, Nitta M, Borger D, Zukerberg LR, Ferry JA, Harris NL et al. EZH2 codon 641 mutations are common in BCL2-rearranged germinal center B cell lymphomas. PLoS One 2011; 6: e28585.

    Article  CAS  Google Scholar 

  34. Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 2011; 476: 298–303.

    Article  CAS  Google Scholar 

  35. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 2010; 42: 181–185.

    Article  CAS  Google Scholar 

  36. Sneeringer CJ, Scott MP, Kuntz KW, Knutson SK, Pollock RM, Richon VM et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci USA 2010; 107: 20980–20985.

    Article  CAS  Google Scholar 

  37. Berg T, Yap D, Thoene S, Wee T, Schoeler N, Umlandt P et al. Mutated EZH2 collaborates with Myc in inducing lymphoma in a mouse model. Blood 2011; 118: 104–104.

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Cancer Institutes (R01 CA137123, to JT), Maher Fund (to JT) and Lymphoma Research Foundation (to JT), and supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research (to VM). JQ1 was kindly provided by James E Bradner (Boston, MA, USA), and DZNep was kindly provided by Victor E Marquez (Frederick, MD, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Tao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Lwin, T., Zhang, X. et al. Disruption of the MYC-miRNA-EZH2 loop to suppress aggressive B-cell lymphoma survival and clonogenicity. Leukemia 27, 2341–2350 (2013). https://doi.org/10.1038/leu.2013.94

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.94

Keywords

This article is cited by

Search

Quick links