Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Heterogeneity of clonal expansion and maturation-linked mutation acquisition in hematopoietic progenitors in human acute myeloid leukemia

Abstract

Recent technological advances led to an appreciation of the genetic complexity of human acute myeloid leukemia (AML), but underlying progenitor cells remain poorly understood because their rarity precludes direct study. We developed a co-culture method integrating hypoxia, aryl hydrocarbon receptor inhibition and micro-environmental support via human endothelial cells to isolate these cells. X-chromosome inactivation studies of the least mature precursors derived following prolonged culture of CD34+/CD33 cells revealed polyclonal growth in highly curable AMLs, suggesting that mutations necessary for clonal expansion were acquired in more mature progenitors. Consistently, in core-binding factor (CBF) leukemias with known complementing mutations, immature precursors derived following prolonged culture of CD34+/CD33 cells harbored neither mutation or the CBF mutation alone, whereas more mature precursors often carried both mutations. These results were in contrast to those with leukemias with poor prognosis that showed clonal dominance in the least mature precursors. These data indicate heterogeneity among progenitors in human AML that may have prognostic and therapeutic implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Welch JS, Link DC . Genomics of AML: clinical applications of next-generation sequencing. Hematology Am Soc Hematol Educ Program 2011; 2011: 30–35.

    Article  PubMed  Google Scholar 

  2. Passegué E, Jamieson CH, Ailles LE, Weissman IL . Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA 2003; 100 (Suppl 1): 11842–11849.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stubbs MC, Armstrong SA . Therapeutic implications of leukemia stem cell development. Clin Cancer Res 2007; 13: 3439–3442.

    Article  CAS  PubMed  Google Scholar 

  4. Dick JE . Stem cell concepts renew cancer research. Blood 2008; 112: 4793–4807.

    Article  CAS  PubMed  Google Scholar 

  5. Lane SW, Gilliland DG . Leukemia stem cells. Semin Cancer Biol 2010; 20: 71–76.

    Article  CAS  PubMed  Google Scholar 

  6. Majeti R . Monoclonal antibody therapy directed against human acute myeloid leukemia stem cells. Oncogene 2011; 30: 1009–1019.

    Article  CAS  PubMed  Google Scholar 

  7. Walter RB, Appelbaum FR, Estey EH, Bernstein ID . Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood 2012; 119: 6198–6208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fialkow PJ, Singer JW, Raskind WH, Adamson JW, Jacobson RJ, Bernstein ID et al. Clonal development, stem-cell differentiation, and clinical remissions in acute nonlymphocytic leukemia. N Engl J Med 1987; 317: 468–473.

    Article  CAS  PubMed  Google Scholar 

  9. Bernstein ID, Singer JW, Andrews RG, Keating A, Powell JS, Bjornson BH et al. Treatment of acute myeloid leukemia cells in vitro with a monoclonal antibody recognizing a myeloid differentiation antigen allows normal progenitor cells to be expressed. J Clin Invest 1987; 79: 1153–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bernstein ID, Singer JW, Smith FO, Andrews RG, Flowers DA, Petersens J et al. Differences in the frequency of normal and clonal precursors of colony-forming cells in chronic myelogenous leukemia and acute myelogenous leukemia. Blood 1992; 79: 1811–1816.

    CAS  PubMed  Google Scholar 

  11. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 2012; 481: 506–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Walter MJ, Shen D, Ding L, Shao J, Koboldt DC, Chen K et al. Clonal architecture of secondary acute myeloid leukemia. N Engl J Med 2012; 366: 1090–1098.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Jan M, Snyder TM, Corces-Zimmerman MR, Vyas P, Weissman IL, Quake SR et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med 2012; 4: 149ra118.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012; 150: 264–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sarry JE, Murphy K, Perry R, Sanchez PV, Secreto A, Keefer C et al. Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rgammac-deficient mice. J Clin Invest 2011; 121: 384–395.

    Article  CAS  PubMed  Google Scholar 

  16. Vargaftig J, Taussig DC, Griessinger E, Anjos-Afonso F, Lister TA, Cavenagh J et al. Frequency of leukemic initiating cells does not depend on the xenotransplantation model used. Leukemia 2012; 26: 858–860.

    Article  CAS  PubMed  Google Scholar 

  17. Taussig DC, Miraki-Moud F, Anjos-Afonso F, Pearce DJ, Allen K, Ridler C et al. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood 2008; 112: 568–575.

    Article  CAS  PubMed  Google Scholar 

  18. Taussig DC, Vargaftig J, Miraki-Moud F, Griessinger E, Sharrock K, Luke T et al. Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(-) fraction. Blood 2010; 115: 1976–1984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 2011; 17: 1086–1093.

    Article  CAS  PubMed  Google Scholar 

  20. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  PubMed  Google Scholar 

  21. Jan M, Chao MP, Cha AC, Alizadeh AA, Gentles AJ, Weissman IL et al. Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker. Proc Natl Acad Sci USA 2011; 108: 5009–5014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goardon N, Marchi E, Atzberger A, Quek L, Schuh A, Soneji S et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 2011; 19: 138–152.

    Article  CAS  PubMed  Google Scholar 

  23. Horton SJ, Huntly BJ . Recent advances in acute myeloid leukemia stem cell biology. Haematologica 2012; 97: 966–974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ailles LE, Gerhard B, Kawagoe H, Hogge DE . Growth characteristics of acute myelogenous leukemia progenitors that initiate malignant hematopoiesis in nonobese diabetic/severe combined immunodeficient mice. Blood 1999; 94: 1761–1772.

    CAS  PubMed  Google Scholar 

  25. Rombouts WJC, Blokland I, Löwenberg B, Ploemacher RE . Biological characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplications in the Flt3 gene. Leukemia 2000; 14: 675–683.

    Article  CAS  PubMed  Google Scholar 

  26. Rombouts WJC, Martens ACM, Ploemacher RE . Identification of variables determining the engraftment potential of human acute myeloid leukemia in the immunodeficient NOD/SCID human chimera model. Leukemia 2000; 14: 889–897.

    Article  CAS  PubMed  Google Scholar 

  27. Lumkul R, Gorin NC, Malehorn MT, Hoehn GT, Zheng R, Baldwin B et al. Human AML cells in NOD/SCID mice: engraftment potential and gene expression. Leukemia 2002; 16: 1818–1826.

    Article  CAS  PubMed  Google Scholar 

  28. Monaco G, Konopleva M, Munsell M, Leysath C, Wang RY, Jackson CE et al. Engraftment of acute myeloid leukemia in NOD/SCID mice is independent of CXCR4 and predicts poor patient survival. Stem Cells 2004; 22: 188–201.

    Article  PubMed  Google Scholar 

  29. Pearce DJ, Taussig D, Zibara K, Smith LL, Ridler CM, Preudhomme C et al. AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML. Blood 2006; 107: 1166–1173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sanchez PV, Perry RL, Sarry JE, Perl AE, Murphy K, Swider CR et al. A robust xenotransplantation model for acute myeloid leukemia. Leukemia 2009; 23: 2109–2117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Taussig DC, Pearce DJ, Simpson C, Rohatiner AZ, Lister TA, Kelly G et al. Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia. Blood 2005; 106: 4086–4092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Andrews RG, Torok-Storb B, Bernstein ID . Myeloid-associated differentiation antigens on stem cells and their progeny identified by monoclonal antibodies. Blood 1983; 62: 124–132.

    CAS  PubMed  Google Scholar 

  33. Griffin JD, Linch D, Sabbath K, Larcom P, Schlossman SF . A monoclonal antibody reactive with normal and leukemic human myeloid progenitor cells. Leuk Res 1984; 8: 521–534.

    Article  CAS  PubMed  Google Scholar 

  34. Andrews RG, Takahashi M, Segal GM, Powell JS, Bernstein ID, Singer JW . The L4F3 antigen is expressed by unipotent and multipotent colony-forming cells but not by their precursors. Blood 1986; 68: 1030–1035.

    CAS  PubMed  Google Scholar 

  35. Andrews RG, Singer JW, Bernstein ID . Precursors of colony-forming cells in humans can be distinguished from colony-forming cells by expression of the CD33 and CD34 antigens and light scatter properties. J Exp Med 1989; 169: 1721–1731.

    Article  CAS  PubMed  Google Scholar 

  36. Bernstein ID, Andrews RG, Berenson R, Bensinger W, Singer JW, Buckner CD . Isolation of human hematopoietic stem cells. In: Champlin RE, Gale RP (eds) New Strategies in Bone Marrow Transplantation. Wiley-Liss: New York, 1991; pp 201–207.

    Google Scholar 

  37. Robertson MJ, Soiffer RJ, Freedman AS, Rabinowe SL, Anderson KC, Ervin TJ et al. Human bone marrow depleted of CD33-positive cells mediates delayed but durable reconstitution of hematopoiesis: clinical trial of MY9 monoclonal antibody-purged autografts for the treatment of acute myeloid leukemia. Blood 1992; 79: 2229–2236.

    CAS  PubMed  Google Scholar 

  38. Bock TA . Assay systems for hematopoietic stem and progenitor cells. Stem Cells 1997; 15 (Suppl 1): 185–195.

    Article  PubMed  Google Scholar 

  39. Johnston DL, Meshinchi S, Opheim KE, Pallavicini MG, Feusner J, Woods WG et al. Progenitor cell involvement is predictive of response to induction chemotherapy in paediatric acute myeloid leukaemia. Br J Haematol 2003; 123: 431–435.

    Article  PubMed  Google Scholar 

  40. Pollard JA, Alonzo TA, Gerbing RB, Woods WG, Lange BJ, Sweetser DA et al. FLT3 internal tandem duplication in CD34+/CD33- precursors predicts poor outcome in acute myeloid leukemia. Blood 2006; 108: 2764–2769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Uchida T, Ohashi H, Aoki E, Nakahara Y, Hotta T, Murate T et al. Clonality analysis by methylation-specific PCR for the human androgen-receptor gene (HUMARA-MSP). Leukemia 2000; 14: 207–212.

    Article  CAS  PubMed  Google Scholar 

  42. Boitano AE, Wang J, Romeo R, Bouchez LC, Parker AE, Sutton SE et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 2010; 329: 1345–1348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 2010; 6: 251–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen GL, Prchal JT . X-linked clonality testing: interpretation and limitations. Blood 2007; 110: 1411–1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Grimwade D, Enver T . Acute promyelocytic leukemia: where does it stem from? Leukemia 2004; 18: 375–384.

    Article  CAS  PubMed  Google Scholar 

  46. Krivtsov AV, Figueroa ME, Sinha AU, Stubbs MC, Feng Z, Valk PJ et al. Cell of origin determines clinically relevant subtypes of MLL-rearranged AML. Leukemia 2013; 27: 852–860.

    Article  CAS  PubMed  Google Scholar 

  47. Miyamoto T, Nagafuji K, Akashi K, Harada M, Kyo T, Akashi T et al. Persistence of multipotent progenitors expressing AML1/ETO transcripts in long-term remission patients with t(8;21) acute myelogenous leukemia. Blood 1996; 87: 4789–4796.

    CAS  PubMed  Google Scholar 

  48. Muto A, Mori S, Matsushita H, Awaya N, Ueno H, Takayama N et al. Serial quantification of minimal residual disease of t(8;21) acute myelogenous leukaemia with RT-competitive PCR assay. Br J Haematol 1996; 95: 85–94.

    Article  CAS  PubMed  Google Scholar 

  49. Miyamoto T, Weissman IL, Akashi K . AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Natl Acad Sci USA 2000; 97: 7521–7526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Burnett AK, Hills RK, Milligan D, Kjeldsen L, Kell J, Russell NH et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial. J Clin Oncol 2011; 29: 369–377.

    Article  CAS  PubMed  Google Scholar 

  51. Castaigne S, Pautas C, Terre C, Raffoux E, Bordessoule D, Bastie JN et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet 2012; 379: 1508–1516.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by grants from the National Cancer Institute/National Institutes of Health (P30-CA015704-35S6 (to RBW), U10-CA098453 (NIH COG Chair Grant, Children’s Hospital of Philadelphia), and U10-CA32102 and U10-CA38926 (to SWOG)), Alex’s Lemonade Stand Foundation (to RBW), the Hope Foundation (to RBW), the Ronald McDonald House Charities of Southern California and Couples Against Leukemia (to RBW), the Leukemia & Lymphoma Society (Specialized Center for Research (SCOR) grant #7008-08 to IDB), a St. Baldrick's Foundation Career Development Award (to JAP) and a CureSearch Research Fellowship Award (to JAP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R B Walter.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Presented in part at the 52nd and 55th Annual Meetings of the American Society of Hematology (4–7 December 2010, Orlando, FL, USA; and 7–10 December 2013, New Orleans, LA, USA).

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walter, R., Laszlo, G., Lionberger, J. et al. Heterogeneity of clonal expansion and maturation-linked mutation acquisition in hematopoietic progenitors in human acute myeloid leukemia. Leukemia 28, 1969–1977 (2014). https://doi.org/10.1038/leu.2014.107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.107

This article is cited by

Search

Quick links