Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cytogenetics and Molecular Genetics

PRPF8 defects cause missplicing in myeloid malignancies

Abstract

Mutations of spliceosome components are common in myeloid neoplasms. One of the affected genes, PRPF8, encodes the most evolutionarily conserved spliceosomal protein. We identified either recurrent somatic PRPF8 mutations or hemizygous deletions in 15/447 and 24/450 cases, respectively. Fifty percent of PRPF8 mutant and del(17p) cases were found in AML and conveyed poor prognosis. PRPF8 defects correlated with increased myeloblasts and ring sideroblasts in cases without SF3B1 mutations. Knockdown of PRPF8 in K562 and CD34+ primary bone marrow cells increased proliferative capacity. Whole-RNA deep sequencing of primary cells from patients with PRPF8 abnormalities demonstrated consistent missplicing defects. In yeast models, homologous mutations introduced into Prp8 abrogated a block experimentally produced in the second step of the RNA splicing process, suggesting that the mutants have defects in proof-reading functions. In sum, the exploration of clinical and functional consequences suggests that PRPF8 is a novel leukemogenic gene in myeloid neoplasms with a distinct phenotype likely manifested through aberrant splicing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 2008; 456: 66–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Article  Google Scholar 

  3. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 2011; 478: 64–69.

    Article  CAS  PubMed  Google Scholar 

  4. Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 2011; 365: 1384–1395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 2013; 28: 241–247.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Walter MJ, Shen D, Shao J, Ding L, White BS, Kandoth C et al. Clonal diversity of recurrently mutated genes in myelodysplastic syndromes. Leukemia 2013; 27: 1275–1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010; 363: 2424–2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009; 360: 2289–2301.

    Article  PubMed  Google Scholar 

  9. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 2010; 42: 722–726.

    Article  CAS  PubMed  Google Scholar 

  10. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009; 361: 1058–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Makishima H, Jankowska AM, Tiu RV, Szpurka H, Sugimoto Y, Hu Z et al. Novel homo- and hemizygous mutations in EZH2 in myeloid malignancies. Leukemia 2010; 24: 1799–1804.

    Article  CAS  PubMed  Google Scholar 

  12. Damm F, Itzykson R, Kosmider O, Droin N, Renneville A, Chesnais V et al. SETBP1 mutations in 658 patients with myelodysplastic syndromes, chronic myelomonocytic leukemia and secondary acute myeloid leukemias. Leukemia 2013; 27: 1401–1403.

    Article  CAS  PubMed  Google Scholar 

  13. Makishima H, Yoshida K, Nguyen N, Przychodzen B, Sanada M, Okuno Y et al. Somatic SETBP1 mutations in myeloid malignancies. Nat Genet 2013; 45: 942–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gomez-Segui I, Makishima H, Jerez A, Yoshida K, Przychodzen B, Miyano S et al. Novel recurrent mutations in the RAS-like GTP-binding gene RIT1 in myeloid malignancies. Leukemia 2013; 27: 1943–1946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Visconte V, Makishima H, Jankowska A, Szpurka H, Traina F, Jerez A et al. SF3B1, a splicing factor is frequently mutated in refractory anemia with ring sideroblasts. Leukemia 2012; 26: 542–545.

    Article  CAS  PubMed  Google Scholar 

  16. Makishima H, Visconte V, Sakaguchi H, Jankowska AM, Abu Kar S, Jerez A et al. Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood 2012; 119: 3203–3210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Damm F, Kosmider O, Gelsi-Boyer V, Renneville A, Carbuccia N, Hidalgo-Curtis C et al. Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes. Blood 2012; 119: 3211–3218.

    Article  CAS  PubMed  Google Scholar 

  18. Hoskins AA, Moore MJ . The spliceosome: a flexible, reversible macromolecular machine. Trends Biochem Sci 2012; 37: 179–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maciejewski JP, Padgett RA . Defects in spliceosomal machinery: a new pathway of leukaemogenesis. Br J Haematol 2012; 158: 165–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grainger RJ, Beggs JD . Prp8 protein: at the heart of the spliceosome. RNA 2005; 11: 533–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Galej WP, Oubridge C, Newman AJ, Nagai K . Crystal structure of Prp8 reveals active site cavity of the spliceosome. Nature 2013; 493: 638–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Konforti BB, Konarska MM . U4/U5/U6 snRNP recognizes the 5' splice site in the absence of U2 snRNP. Genes Dev 1994; 8: 1962–1973.

    Article  CAS  PubMed  Google Scholar 

  23. Luo HR, Moreau GA, Levin N, Moore MJ . The human Prp8 protein is a component of both U2- and U12-dependent spliceosomes. RNA 1999; 5: 893–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schellenberg MJ, Wu T, Ritchie DB, Fica S, Staley JP, Atta KA et al. A conformational switch in PRP8 mediates metal ion coordination that promotes pre-mRNA exon ligation. Nat Struct Mol Biol 2013; 20: 728–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McKie AB, McHale JC, Keen TJ, Tarttelin EE, Goliath R, van Lith-Verhoeven JJ et al. Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum Mol Genet 2001; 10: 1555–1562.

    Article  CAS  PubMed  Google Scholar 

  26. Towns KV, Kipioti A, Long V, McKibbin M, Maubaret C, Vaclavik V et al. Prognosis for splicing factor PRPF8 retinitis pigmentosa, novel mutations and correlation between human and yeast phenotypes. Hum Mutat 2010; 31: E1361–E1376.

    Article  CAS  PubMed  Google Scholar 

  27. Shaffer LG, Tommerup N . ISCN 2009. An International System for Human Cytogenetics Nomenclature. Karger: Basel, 2009.

    Google Scholar 

  28. Przychodzen B, Jerez A, Guinta K, Sekeres MA, Padgett R, Maciejewski JP et al. Patterns of missplicing due to somatic U2AF1 mutations in myeloid neoplasms. Blood 2013; 122: 999–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Makishima H, Jankowska AM, McDevitt MA, O'Keefe C, Dujardin S, Cazzolli H et al. CBL, CBLB, TET2, ASXL1, and IDH1/2 mutations and additional chromosomal aberrations constitute molecular events in chronic myelogenous leukemia. Blood 2011; 117: e198–e206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Khan SN, Jankowska AM, Mahfouz R, Dunbar AJ, Sugimoto Y, Hosono N et al. Multiple mechanisms deregulate EZH2 and histone H3 lysine 27 epigenetic changes in myeloid malignancies. Leukemia 2013; 27: 1301–1309.

    Article  CAS  PubMed  Google Scholar 

  31. Lesser CF, Guthrie C . Mutational analysis of pre-mRNA splicing in Saccharomyces cerevisiae using a sensitive new reporter gene, CUP1. Genetics 1993; 133: 851–863.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Query CC, Konarska MM . Suppression of multiple substrate mutations by spliceosomal Prp8 alleles suggests functional correlations with ribosomal ambiguity mutants. Mol Cell 2004; 14: 343–354.

    Article  CAS  PubMed  Google Scholar 

  33. Yeo G, Burge CB . Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol 2004; 11: 377–394.

    Article  CAS  PubMed  Google Scholar 

  34. Liu L, Query CC, Konarska MM . Opposing classes of Prp8 alleles modulate the transition between the catalytic steps of pre-mRNA splicing. Nat Struct Mol Biol 2007; 14: 519–526.

    Article  CAS  PubMed  Google Scholar 

  35. Keightley MC, Crowhurst MO, Layton JE, Beilharz T, Markmiller S, Varma S et al. In vivo mutation of pre-mRNA processing factor 8 (Prpf8) affects transcript splicing, cell survival and myeloid differentiation. FEBS Lett 2013; 587: 2150–2157.

    Article  CAS  PubMed  Google Scholar 

  36. Visconte V, Makishima H, Maciejewski JP, Tiu RV . Emerging roles of the spliceosomal machinery in myelodysplastic syndromes and other hematological disorders. Leukemia 2012; 26: 2447–2454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Soenen V, Preudhomme C, Roumier C, Daudignon A, Lai JL, Fenaux P . 17p Deletion in acute myeloid leukemia and myelodysplastic syndrome. Analysis of breakpoints and deleted segments by fluorescence in situ. Blood 1998; 91: 1008–1015.

    CAS  PubMed  Google Scholar 

  38. Allende-Vega N, Dayal S, Agarwala U, Sparks A, Bourdon JC, Saville MK . p53 is activated in response to disruption of the pre-mRNA splicing machinery. Oncogene 2012; 32: 1–14.

    Article  PubMed  Google Scholar 

  39. Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008; 134: 112–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McKenzie M, Tucker EJ, Compton AG, Lazarou M, George C, Thorburn DR et al. Mutations in the gene encoding C8orf38 block complex I assembly by inhibiting production of the mitochondria-encoded subunit ND1. J Mol Biol 2011; 414: 413–426.

    Article  CAS  PubMed  Google Scholar 

  41. Yoshikumi Y, Mashima H, Ueda N, Ohno H, Suzuki J, Tanaka S et al. Roles of CTPL/Sfxn3 and Sfxn family members in pancreatic islet. J Cell Biochem 2005; 95: 1157–1168.

    Article  CAS  PubMed  Google Scholar 

  42. Ye X, Xu J, Cheng C, Yin G, Zeng L, Ji C et al. Isolation and characterization of a novel human putative anemia-related gene homologous to mouse sideroflexin. Biochem Genet 2003; 41: 119–125.

    Article  CAS  PubMed  Google Scholar 

  43. Lindhurst MJ, Fiermonte G, Song S, Struys E, De Leonardis F, Schwartzberg PL et al. Knockout of Slc25a19 causes mitochondrial thiamine pyrophosphate depletion, embryonic lethality, CNS malformations, and anemia. Proc Natl Acad Sci USA 2006; 103: 15927–15932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Spiegel R, Shaag A, Edvardson S, Mandel H, Stepensky P, Shalev SA et al. SLC25A19 mutation as a cause of neuropathy and bilateral striatal necrosis. Ann Neurol 2009; 66: 419–424.

    Article  CAS  PubMed  Google Scholar 

  45. Badhai J, Frojmark AS, E JD, Schuster J, Dahl N . Ribosomal protein S19 and S24 insufficiency cause distinct cell cycle defects in Diamond-Blackfan anemia. Biochim Biophys Acta 2009; 1792: 1036–1042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Boria I, Quarello P, Avondo F, Garelli E, Aspesi A, Carando A et al. A new database for ribosomal protein genes which are mutated in Diamond-Blackfan Anemia. Hum Mutat 2008; 29: E263–E270.

    Article  PubMed  Google Scholar 

  47. Collins CA, Guthrie C . Allele-specific genetic interactions between Prp8 and RNA active site residues suggest a function for Prp8 at the catalytic core of the spliceosome. Genes Dev 1999; 13: 1970–1982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. House AE, Lynch KW . Regulation of alternative splicing: more than just the ABCs. J Biol Chem 2008; 283: 1217–1221.

    Article  CAS  PubMed  Google Scholar 

  49. Umen JG, Guthrie C . A novel role for a U5 snRNP protein in 3' splice site selection. Genes Dev 1995; 9: 855–868.

    Article  CAS  PubMed  Google Scholar 

  50. Badhai J, Frojmark AS, Razzaghian HR, Davey E, Schuster J, Dahl N . Posttranscriptional down-regulation of small ribosomal subunit proteins correlates with reduction of 18S rRNA in RPS19 deficiency. FEBS Lett 2009; 583: 2049–2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang K, Zhang L, Xu T, Heroux A, Zhao R . Crystal structure of the beta-finger domain of Prp8 reveals analogy to ribosomal proteins. Proc Natl Acad Sci USA 2008; 105: 13817–13822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hahn D, Kudla G, Tollervey D, Beggs JD . Brr2p-mediated conformational rearrangements in the spliceosome during activation and substrate repositioning. Genes Dev 2012; 26: 2408–2421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants R01 HL082983 (JPM), RO1 GM093074 (RAP), and RO1 GM049044 (MMK), Scott Hamilton CARES Initiative (HM), Aplastic Anemia & MDS International Foundation (HM), Fulbright Scholar Fellowship, US Department of State (AK). We thank Naoko Hosono, Kathryn Guinta and Brittney Dienes for experimental and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Makishima.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author contributions

AK, JPM, RAP, MMK and HM designed research, performed research, collected data, performed statistical analysis and wrote the manuscript; BP and MC designed research, performed statistical analysis, contributed analytical tools, interpreted data and wrote the manuscript. JS, MMK, MN, ZKO, EDH, KY, SO and JB collected and interpreted data.

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurtovic-Kozaric, A., Przychodzen, B., Singh, J. et al. PRPF8 defects cause missplicing in myeloid malignancies. Leukemia 29, 126–136 (2015). https://doi.org/10.1038/leu.2014.144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.144

This article is cited by

Search

Quick links