Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

A microRNA-mediated regulatory loop modulates NOTCH and MYC oncogenic signals in B- and T-cell malignancies

Abstract

Growing evidence suggests that microRNAs (miRNAs) facilitate the cross-talk between transcriptional modules and signal transduction pathways. MYC and NOTCH1 contribute to the pathogenesis of lymphoid malignancies. NOTCH induces MYC, connecting two signaling programs that enhance oncogenicity. Here we show that this relationship is bidirectional and that MYC, via a miRNA intermediary, modulates NOTCH. MicroRNA-30a (miR-30a), a member of a family of miRNAs that are transcriptionally suppressed by MYC, directly binds to and inhibits NOTCH1 and NOTCH2 expression. Using a murine model and genetically modified human cell lines, we confirmed that miR-30a influences NOTCH expression in a MYC-dependent fashion. In turn, through genetic modulation, we demonstrated that intracellular NOTCH1 and NOTCH2, by inducing MYC, suppressed miR-30a. Conversely, pharmacological inhibition of NOTCH decreased MYC expression and ultimately de-repressed miR-30a. Examination of genetic models of gain and loss of miR-30a in diffuse large B-cell lymphoma (DLBCL) and T-acute lymphoblastic leukemia (T-ALL) cells suggested a tumor-suppressive role for this miRNA. Finally, the activity of the miR-30a–NOTCH–MYC loop was validated in primary DLBCL and T-ALL samples. These data define the presence of a miRNA-mediated regulatory circuitry that may modulate the oncogenic signals originating from NOTCH and MYC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Dang CV . MYC on the path to cancer. Cell 2012; 149: 22–35.

    Article  CAS  Google Scholar 

  2. South AP, Cho RJ, Aster JC . The double-edged sword of Notch signaling in cancer. Semin Cell Dev Biol 2012; 23: 458–464.

    Article  CAS  Google Scholar 

  3. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  Google Scholar 

  4. Kridel R, Meissner B, Rogic S, Boyle M, Telenius A, Woolcock B et al. Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood 2012; 119: 1963–1971.

    Article  CAS  Google Scholar 

  5. Lee SY, Kumano K, Nakazaki K, Sanada M, Matsumoto A, Yamamoto G et al. Gain-of-function mutations and copy number increases of Notch2 in diffuse large B-cell lymphoma. Cancer Sci 2009; 100: 920–926.

    Article  CAS  Google Scholar 

  6. Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 2011; 365: 2497–2506.

    Article  CAS  Google Scholar 

  7. Martinez N, Almaraz C, Vaque JP, Varela I, Derdak S, Beltran S et al. Whole-exome sequencing in splenic marginal zone lymphoma reveals mutations in genes involved in marginal zone differentiation. Leukemia 2014; 28: 1334–1340.

    Article  CAS  Google Scholar 

  8. Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 2006; 20: 2096–2109.

    Article  CAS  Google Scholar 

  9. Klinakis A, Szabolcs M, Politi K, Kiaris H, Artavanis-Tsakonas S, Efstratiadis A . Myc is a Notch1 transcriptional target and a requisite for Notch1-induced mammary tumorigenesis in mice. Proc Natl Acad Sci USA 2006; 103: 9262–9267.

    Article  CAS  Google Scholar 

  10. Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA 2006; 103: 18261–18266.

    Article  CAS  Google Scholar 

  11. Mazur PK, Einwachter H, Lee M, Sipos B, Nakhai H, Rad R et al. Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma. Proc Natl Acad Sci USA 2010; 107: 13438–13443.

    Article  CAS  Google Scholar 

  12. Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J et al. Genomic targets of the human c-Myc protein. Genes Dev 2003; 17: 1115–1129.

    Article  CAS  Google Scholar 

  13. Li Z, Van Calcar S, Qu C, Cavenee WK, Zhang MQ, Ren B . A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc Natl Acad Sci USA 2003; 100: 8164–8169.

    Article  CAS  Google Scholar 

  14. Zeller KI, Zhao X, Lee CW, Chiu KP, Yao F, Yustein JT et al. Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci USA 2006; 103: 17834–17839.

    Article  CAS  Google Scholar 

  15. Gurtan AM, Sharp PA . The role of miRNAs in regulating gene expression networks. J Mol Biol 2013; 425: 3582–3600.

    Article  CAS  Google Scholar 

  16. Tsang J, Zhu J, van Oudenaarden A . MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell 2007; 26: 753–767.

    Article  CAS  Google Scholar 

  17. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 2008; 40: 43–50.

    Article  CAS  Google Scholar 

  18. Lawrie CH . MicroRNAs and lymphomagenesis: a functional review. Br J Haematol 2013; 160: 571–581.

    Article  CAS  Google Scholar 

  19. Li C, Kim SW, Rai D, Bolla AR, Adhvaryu S, Kinney MC et al. Copy number abnormalities, MYC activity, and the genetic fingerprint of normal B cells mechanistically define the microRNA profile of diffuse large B-cell lymphoma. Blood 2009; 113: 6681–6690.

    Article  CAS  Google Scholar 

  20. Katzerke C, Madan V, Gerloff D, Brauer-Hartmann D, Hartmann JU, Wurm AA et al. Transcription factor C/EBPalpha-induced microRNA-30c inactivates Notch1 during granulopoiesis and is downregulated in acute myeloid leukemia. Blood 2013; 122: 2433–2442.

    Article  CAS  Google Scholar 

  21. Su X, Qian C, Zhang Q, Hou J, Gu Y, Han Y et al. miRNomes of haematopoietic stem cells and dendritic cells identify miR-30b as a regulator of Notch1. Nat Commun 2013; 4: 2903.

    Article  Google Scholar 

  22. Jiang D, Aguiar RC . MicroRNA-155 controls RB phosphorylation in normal and malignant B lymphocytes via the noncanonical TGF-beta1/SMAD5 signaling module. Blood 2014; 123: 86–93.

    Article  CAS  Google Scholar 

  23. Kim SW, Ramasamy K, Bouamar H, Lin AP, Jiang D, Aguiar RC . MicroRNAs miR-125a and miR-125b constitutively activate the NF-kappaB pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20). Proc Natl Acad Sci USA 2012; 109: 7865–7870.

    Article  CAS  Google Scholar 

  24. Rai D, Kim SW, McKeller MR, Dahia PL, Aguiar RC . Targeting of SMAD5 links microRNA-155 to the TGF-beta pathway and lymphomagenesis. Proc Natl Acad Sci USA 2010; 107: 3111–3116.

    Article  CAS  Google Scholar 

  25. Ebert MS, Neilson JR, Sharp PA . MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 2007; 4: 721–726.

    Article  CAS  Google Scholar 

  26. Bouamar H, Abbas S, Lin AP, Wang L, Jiang D, Holder KN et al. A capture-sequencing strategy identifies IRF8, EBF1, and APRIL as novel IGH fusion partners in B-cell lymphoma. Blood 2013; 122: 726–733.

    Article  CAS  Google Scholar 

  27. Kim SW, Rai D, Aguiar RC . Gene set enrichment analysis unveils the mechanism for the phosphodiesterase 4B control of glucocorticoid response in B-cell lymphoma. Clin Cancer Res 2011; 17: 6723–6732.

    Article  CAS  Google Scholar 

  28. Chaubey A, Karanti S, Rai D, Oh T, Adhvaryu SG, Aguiar RC . MicroRNAs and deletion of the derivative chromosome 9 in chronic myeloid leukemia. Leukemia 2009; 23: 186–188.

    Article  CAS  Google Scholar 

  29. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP . MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007; 27: 91–105.

    Article  CAS  Google Scholar 

  30. Liu S, Breit S, Danckwardt S, Muckenthaler MU, Kulozik AE . Downregulation of Notch signaling by gamma-secretase inhibition can abrogate chemotherapy-induced apoptosis in T-ALL cell lines. Ann Hematol 2009; 88: 613–621.

    Article  CAS  Google Scholar 

  31. Joshi I, Minter LM, Telfer J, Demarest RM, Capobianco AJ, Aster JC et al. Notch signaling mediates G1/S cell-cycle progression in T cells via cyclin D3 and its dependent kinases. Blood 2009; 113: 1689–1698.

    Article  CAS  Google Scholar 

  32. Gorrini C, Harris IS, Mak TW . Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 2013; 12: 931–947.

    Article  CAS  Google Scholar 

  33. Frese KK, Tuveson DA . Maximizing mouse cancer models. Nat Rev Cancer 2007; 7: 645–658.

    Article  CAS  Google Scholar 

  34. Rossi D, Trifonov V, Fangazio M, Bruscaggin A, Rasi S, Spina V et al. The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development. J Exp Med 2012; 209: 1537–1551.

    Article  CAS  Google Scholar 

  35. King B, Trimarchi T, Reavie L, Xu L, Mullenders J, Ntziachristos P et al. The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell 2013; 153: 1552–1566.

    Article  CAS  Google Scholar 

  36. O'Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med 2007; 204: 1813–1824.

    Article  CAS  Google Scholar 

  37. Bridge G, Monteiro R, Henderson S, Emuss V, Lagos D, Georgopoulou D et al. The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis. Blood 2012; 120: 5063–5072.

    Article  CAS  Google Scholar 

  38. Jiang Q, Lagos-Quintana M, Liu D, Shi Y, Helker C, Herzog W et al. miR-30a regulates endothelial tip cell formation and arteriolar branching. Hypertension 2013; 62: 592–598.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H Bouamar for technical help in generating the microRNA sponges, A Weng for suggestions and the Flow Cytometry Shared Resource Facility at UTHSCSA for the cell sorting. This work was supported by a grant from the National Cancer Institute (R01-CA138747), a Veterans Administration Merit Award (I01-BX001882) and a National Cancer Institute Cancer Center Support Grant (P30 CA054174).

Author Contributions

MO, HB, A-PL and LW designed and conducted the experiments and contributed to analysis; JCA provided reagents, contributed to analysis and gave conceptual advice; HS provided critical reagents, discussed experimental design and contributed to data analysis. RCTA conceived the project, designed the experimental strategy, conducted experiments, supervised the study and analysis and wrote the manuscript. All authors reviewed the manuscript and agreed to its content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R C T Aguiar.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortega, M., Bhatnagar, H., Lin, AP. et al. A microRNA-mediated regulatory loop modulates NOTCH and MYC oncogenic signals in B- and T-cell malignancies. Leukemia 29, 968–976 (2015). https://doi.org/10.1038/leu.2014.302

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.302

This article is cited by

Search

Quick links