Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute myeloid leukemia

Protein kinase CK2 regulates AKT, NF-κB and STAT3 activation, stem cell viability and proliferation in acute myeloid leukemia

Subjects

Abstract

Protein kinase CK2 sustains acute myeloid leukemia cell growth, but its role in leukemia stem cells is largely unknown. Here, we discovered that the CK2 catalytic α and regulatory β subunits are consistently expressed in leukemia stem cells isolated from acute myeloid leukemia patients and cell lines. CK2 inactivation with the selective inhibitor CX-4945 or RNA interference induced an accumulation of leukemia stem cells in the late S–G2–M phases of the cell cycle and triggered late-onset apoptosis. As a result, leukemia stem cells displayed an increased sensitivity to the chemotherapeutic agent doxorubicin. From a molecular standpoint, CK2 blockade was associated with a downmodulation of the stem cell-regulating protein BMI-1 and a marked impairment of AKT, nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) activation, whereas FOXO3a nuclear activity was induced. Notably, combined CK2 and either NF-κB or STAT3 inhibition resulted in a superior cytotoxic effect on leukemia stem cells. This study suggests that CK2 blockade could be a rational approach to minimize the persistence of residual leukemia cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Dohner H, Weisdorf DJ, Bloomfield CD . Acute myeloid leukemia. N Engl J Med 2015; 373: 1136–1152.

    PubMed  Google Scholar 

  2. Badar T, Ravandi F . Relapsed acute myeloid leukemia: need for innovative treatment strategies to improve outcome. Clin Lymph Myel Leuk 2015; 15: S104–S108.

    Article  Google Scholar 

  3. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3: 730–737.

    Article  CAS  PubMed  Google Scholar 

  4. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    Article  CAS  PubMed  Google Scholar 

  5. Reinisch A, Chan SM, Thomas D, Majeti R . Biology and clinical relevance of acute myeloid leukemia stem cells. Semin Hematol 2015; 52: 150–164.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Litchfield DW . Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 2003; 369 (Pt 1): 1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Piazza F, Manni S, Ruzzene M, Pinna LA, Gurrieri C, Semenzato G . Protein kinase CK2 in hematologic malignancies: reliance on a pivotal cell survival regulator by oncogenic signaling pathways. Leukemia 2012; 26: 1174–1179.

    Article  CAS  PubMed  Google Scholar 

  8. Mandato E, Manni S, Zaffino F, Semenzato G, Piazza F . Targeting CK2-driven non-oncogene addiction in B-cell tumors. Oncogene 2016; e-pub ahead of print 4 April 2016 doi:10.1038/onc.2016.86.

    Article  CAS  PubMed  Google Scholar 

  9. Kato Jr T, Delhase M, Hoffmann A, Karin M . CK2 is a C-terminal IκB kinase responsible for NF-κB activation during the UV response. Mol Cell 2003; 12: 829–839.

    Article  CAS  PubMed  Google Scholar 

  10. Wang D, Westerheide SD, Hanson JL, Baldwin AS . Tumor necrosis factor α-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J Biol Chem 2000; 275: 32592–32597.

    Article  CAS  PubMed  Google Scholar 

  11. Zheng Y, Qin H, Frank SJ, Deng L, Litchfield DW, Tefferi A et al. A CK2-dependent mechanism for activation of the JAK-STAT signaling pathway. Blood 2011; 118: 156–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Torres J, Pulido R . The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation. J Biol Chem 2001; 276: 993–998.

    Article  CAS  PubMed  Google Scholar 

  13. Di Maira G, Salvi M, Arrigoni G, Marin O, Sarno S, Brustolon F et al. Protein kinase CK2 phosphorylates and upregulates Akt/PKB. Cell Death Differ 2005; 12: 668–677.

    Article  CAS  PubMed  Google Scholar 

  14. Hong S-H, Yang S-J, Kim T-M, Shim J-S, Lee H-S, Lee G-Y et al. Molecular integration of HoxB4 and STAT3 for self-renewal of hematopoietic stem cells: a model of molecular convergence for stemness. Stem Cells 2014; 32: 1313–1322.

    Article  CAS  PubMed  Google Scholar 

  15. Chung Y-J, Park B-B, Kang Y-J, Kim T-m, Eaves CJ, Oh I-H . Unique effects of Stat3 on the early phase of hematopoietic stem cell regeneration. Blood 2006; 108: 1208–1215.

    Article  CAS  PubMed  Google Scholar 

  16. Stein SJ, Baldwin AS . Deletion of the NF-κB subunit p65/RelA in the hematopoietic compartment leads to defects in hematopoietic stem cell function. Blood 2013; 121: 5015–5024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Martelli AM, Evangelisti C, Chiarini F, Grimaldi C, Cappellini A, Ognibene A et al. The emerging role of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in normal myelopoiesis and leukemogenesis. Biochim Biophys Acta 2010; 1803: 991–1002.

    Article  CAS  PubMed  Google Scholar 

  18. Miyamoto K, Araki KY, Naka K, Arai F, Takubo K, Yamazaki S et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 2007; 1: 101–112.

    Article  CAS  PubMed  Google Scholar 

  19. Tzivion G, Dobson M, Ramakrishnan G . FoxO transcription factors; regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta 2011; 1813: 1938–1945.

    Article  CAS  PubMed  Google Scholar 

  20. Sykes SM, Lane SW, Bullinger L, Kalaitzidis D, Yusuf R, Saez B et al. AKT/FOXO signaling enforces reversible differentiation blockade in myeloid leukemias. Cell 2011; 146: 697–708.

    Article  CAS  PubMed  Google Scholar 

  21. Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T, Kondo Y et al. TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 2010; 463: 676–680.

    Article  CAS  PubMed  Google Scholar 

  22. Kim JS, Eom JI, Cheong JW, Choi AJ, Lee JK, Yang WI et al. Protein kinase CK2alpha as an unfavorable prognostic marker and novel therapeutic target in acute myeloid leukemia. Clin Cancer Res 2007; 13: 1019–1028.

    Article  CAS  PubMed  Google Scholar 

  23. Quotti Tubi L, Gurrieri C, Brancalion A, Bonaldi L, Bertorelle R, Manni S et al. Inhibition of protein kinase CK2 with the clinical-grade small ATP-competitive compound CX-4945 or by RNA interference unveils its role in acute myeloid leukemia cell survival, p53-dependent apoptosis and daunorubicin-induced cytotoxicity. J Hematol Oncol 2013; 6: 78.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cheong J-W, Min YH, Eom JI, Kim SJ, Jeung HK, Kim JS . Inhibition of CK2α and PI3K/Akt synergistically induces apoptosis of CD34+CD38 leukaemia cells while sparing haematopoietic stem cells. Anticancer Res 2010; 30: 4625–4634.

    CAS  PubMed  Google Scholar 

  25. Chon HJ, Bae KJ, Lee Y, Kim J . The casein kinase 2 inhibitor, CX-4945, as an anti-cancer drug in treatment of human hematological malignancies. Front Pharmacol 2015; 6: 70.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pierre F, Chua PC, O'Brien SE, Siddiqui-Jain A, Bourbon P, Haddach M et al. Pre-clinical characterization of CX-4945, a potent and selective small molecule inhibitor of CK2 for the treatment of cancer. Mol Cell Biochem 2011; 356: 37–43.

    Article  CAS  PubMed  Google Scholar 

  27. Pedranzini L, Mottadelli F, Ronzoni S, Rossella F, Ferracin M, Magnani I et al. Differential cytogenomics and miRNA signature of the acute myeloid leukaemia Kasumi-1 cell line CD34+38-compartment. Leuk Res 2010; 34: 1287–1295.

    Article  CAS  PubMed  Google Scholar 

  28. Yde CW, Olsen BB, Meek D, Watanabe N, Guerra B . The regulatory beta-subunit of protein kinase CK2 regulates cell-cycle progression at the onset of mitosis. Oncogene 2008; 27: 4986–4997.

    Article  CAS  PubMed  Google Scholar 

  29. Guerra B, Issinger OG . Protein kinase CK2 and its role in cellular proliferation, development and pathology. Electrophoresis 1999; 20: 391–408.

    Article  CAS  PubMed  Google Scholar 

  30. Li D, Dobrowolska G, Aicher LD, Chen M, Wright JH, Drueckes P et al. Expression of the casein kinase 2 subunits in Chinese hamster ovary and 3T3 L1 cells provides information on the role of the enzyme in cell proliferation and the cell cycle. J Biol Chem 1999; 274: 32988–32996.

    Article  CAS  PubMed  Google Scholar 

  31. Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 2006; 66: 6063–6071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dimri GP, Martinez JL, Jacobs JJ, Keblusek P, Itahana K, Van Lohuizen M et al. The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res 2002; 62: 4736–4745.

    CAS  PubMed  Google Scholar 

  33. Essaghir A, Dif N, Marbehant CY, Coffer PJ, Demoulin J-B . The transcription of FOXO genes is stimulated by FOXO3 and repressed by growth factors. J Biol Chem 2009; 284: 10334–10342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu CM, Chang CH, Yu CH, Hsu CC, Huang LL . Hyaluronan substratum induces multidrug resistance in human mesenchymal stem cells via CD44 signaling. Cell Tissue Res 2009; 336: 465–475.

    Article  CAS  PubMed  Google Scholar 

  35. Zoller M . CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer 2011; 11: 254–267.

    Article  PubMed  Google Scholar 

  36. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE . Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006; 12: 1167–1174.

    Article  PubMed  Google Scholar 

  37. Schust J, Sperl B, Hollis A, Mayer TU, Berg T . Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol 2006; 13: 1235–1242.

    Article  CAS  PubMed  Google Scholar 

  38. Logue JS, Morrison DK . Complexity in the signaling network: insights from the use of targeted inhibitors in cancer therapy. Genes Dev 2012; 26: 641–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jia H, Liu Y, Xia R, Tong C, Yue T, Jiang J et al. Casein kinase 2 promotes Hedgehog signaling by regulating both smoothened and Cubitus interruptus. J Biol Chem 2010; 285: 37218–37226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stahl M, Dijkers PF, Kops GJ, Lens SM, Coffer PJ, Burgering BM et al. The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J Immunol 2002; 168: 5024–5031.

    Article  CAS  PubMed  Google Scholar 

  41. Kornblau SM, Singh N, Qiu Y, Chen W, Zhang N, Coombes KR . Highly phosphorylated FOXO3A is an adverse prognostic factor in acute myeloid leukemia. Clin Cancer Res 2010; 16: 1865–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Siddiqui-Jain A, Drygin D, Streiner N, Chua P, Pierre F, O'Brien SE et al. CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy. Cancer Res 2010; 70: 10288–10298.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Y, Xing Y, Zhang L, Mei Y, Yamamoto K, Mak TW et al. Regulation of cell cycle progression by forkhead transcription factor FOXO3 through its binding partner DNA replication factor Cdt1. Proc Natl Acad Sci USA 2012; 109: 5717–5722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Santini V, Nooter K, Delwel R, Lowenberg B . Susceptibility of acute myeloid leukemia (AML) cells from clinically resistant and sensitive patients to daunomycin (DNR): assessment in vitro after stimulation with colony stimulating factors (CSFs). Leuk Res 1990; 14: 377–380.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank patients and their families for donating samples. We thank Dr A Cabrelle (Venetian Institute of Molecular Medicine (VIMM)) for helping with FACS experiments. This work was supported by grants from Associazione Italiana per la Ricerca sul Cancro (AIRC; no. 14481), from the Italian Ministry of Education, University and Research (FIRB (Futuro in Ricerca) no. RBFR086EW9_001), from the University of Padova (Progetti di Ricerca di Ateneo no. CPDA114940/11) to FP and from AIRC IG to GS. SM is supported by a 2014 fellowship of the ‘Fondazione Umberto Veronesi’, Milan, Italy.

Author contributions

LQT and SCN performed research, analyzed data and wrote the manuscript. AB, EDB, SM, EM, FZ, PM, MC and KG helped in experiments and partly analyzed data; LT, GB, RZ and CG contributed patient samples and critical advices during elaboration of data; GS contributed patients and provided funding; FP conceived and designed the study, provided funding, contributed patient samples, supervised research and data analysis and wrote/edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C Gurrieri or F Piazza.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quotti Tubi, L., Canovas Nunes, S., Brancalion, A. et al. Protein kinase CK2 regulates AKT, NF-κB and STAT3 activation, stem cell viability and proliferation in acute myeloid leukemia. Leukemia 31, 292–300 (2017). https://doi.org/10.1038/leu.2016.209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.209

This article is cited by

Search

Quick links