Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genome-wide survey implicates the influence of copy number variants (CNVs) in the development of early-onset bipolar disorder

Abstract

We used genome-wide single nucleotide polymorphism (SNP) data to search for the presence of copy number variants (CNVs) in 882 patients with bipolar disorder (BD) and 872 population-based controls. A total of 291 (33%) patients had an early age-at-onset 21 years (AO21years). We systematically filtered for CNVs that cover at least 30 consecutive SNPs and which directly affect at least one RefSeq gene. We tested whether (a) the genome-wide burden of these filtered CNVs differed between patients and controls and whether (b) the frequency of specific CNVs differed between patients and controls. Genome-wide burden analyses revealed that the frequency and size of CNVs did not differ substantially between the total samples of BD patients and controls. However, separate analysis of patients with AO21years and AO>21years showed that the frequency of microduplications was significantly higher (P=0.0004) and the average size of singleton microdeletions was significantly larger (P=0.0056) in patients with AO21years compared with controls. A search for specific BD-associated CNVs identified two common CNVs: (a) a 160 kb microduplication on 10q11 was overrepresented in AO21years patients (9.62%) compared with controls (3.67%, P=0.0005) and (b) a 248 kb microduplication on 6q27 was overrepresented in the AO21years subgroup (5.84%) compared with controls (2.52%, P=0.0039). These data suggest that CNVs have an influence on the development of early-onset, but not later-onset BD. Our study provides further support for previous hypotheses of an etiological difference between early-onset and later-onset BD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Craddock N, Jones I . Genetics of bipolar disorder. J Med Genet 1999; 36: 585–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Berrettini W . Progress and pitfalls: bipolar molecular linkage studies. J Affect Disord 1998; 50: 287–297.

    Article  CAS  PubMed  Google Scholar 

  3. Kendler KS, Pedersen NL, Johnson L, Neale MC, Mathé AA . A pilot Swedish twin study of affective illness, including hospital- and population-ascertained subsamples. Arch Gen Psychiatry 1993; 50: 699–700.

    Article  CAS  PubMed  Google Scholar 

  4. Burmeister M, McInnis MG, Zöllner S . Psychiatric genetics: progress amid controversy. Nat Rev Genet 2008; 9: 527–540.

    Article  CAS  PubMed  Google Scholar 

  5. Sebat J . Major changes in our DNA lead to major changes in our thinking. Nat Genet 2007; 39: S3–S5.

    Article  CAS  PubMed  Google Scholar 

  6. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T et al. Strong association of de novo copy number mutations with autism. Science 2007; 316: 445–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 2008; 358: 667–675.

    Article  CAS  PubMed  Google Scholar 

  8. Stefansson H, Rujescu D, Cichon S, Pietiläinen OP, Ingason A, Steinberg S et al. Large recurrent microdeletions associated with schizophrenia. Nature 2008; 455: 232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. The International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008; 455: 237–241.

    Article  PubMed Central  Google Scholar 

  10. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539–543.

    CAS  PubMed  Google Scholar 

  11. Lachman HM, Pedrosa E, Petruolo OA, Cockerham M, Papolos A, Novak T et al. Increase in GSK3beta gene copy number variation in bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2007; 144B: 259–265.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang D, Cheng L, Qian Y, Alliey-Rodriguez N, Kelsoe JR, Greenwood T et al. Singleton deletions throughout the genome increase risk of bipolar disorder. Mol Psychiatry 2009; 14: 376–380.

    Article  CAS  PubMed  Google Scholar 

  13. Yang S, Wang K, Gregory B, Berrettini W, Wang L, Hakonarson H et al. Genomic landscape of a three-generation pedigree segregating affective disorder. PLoS One 2009; 4: e4474.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Grozeva D, Kirov G, Ivanov D, Jones IR, Jones L, Green EK et al. Rare copy number variants a point of rarity in genetic risk for bipolar disorder and schizophrenia. Arch Gen Psychiatry 2010; 67: 318–327.

    Article  PubMed  PubMed Central  Google Scholar 

  15. The Wellcome Trust Case Control Consortium. Genome-wide association study of CNVs in 16 000 cases of eight common diseases and 3000 shared controls. Nature 2010; 464: 713–720.

    Article  PubMed Central  Google Scholar 

  16. Weissman MM, Gershon ES, Kidd KK, Prusoff BA, Leckman JF, Dibble E et al. Psychiatric disorders in the relatives of probands with affective disorders. The Yale University-National Institute of Mental Health Collaborative Study. Arch Gen Psychiatr 1984; 41: 13–21.

    Article  CAS  PubMed  Google Scholar 

  17. Schurhoff F, Bellivier F, Jouvent R, Mouren-Simeoni MC, Bouvard M, Allilaire JF et al. Early and late onset bipolar disorders: two different forms of manic-depressive illness? J Affect Disord 2000; 58: 215–221.

    Article  CAS  PubMed  Google Scholar 

  18. Strober M, Morrell W, Burroughs J, Lampert C, Danforth H, Freeman R . A family study of bipolar I disorder in adolescence. Early onset of symptoms linked to increased familial loading and lithium resistance. J Affect Disord 1988; 15: 255–268.

    Article  CAS  PubMed  Google Scholar 

  19. Faraone SV, Glatt SJ, Tsuang MT . The genetics of pediatric-onset bipolar disorder. Biol Psychiatr 2003; 53: 970–977.

    Article  Google Scholar 

  20. Grigoroiu-Serbanescu M, Martinez M, Nöthen MM, Grinberg M, Sima D, Propping P et al. Different familial transmission patterns in bipolar I disorder with onset before and after age 25. Am J Med Genet 2001; 105: 765–773.

    Article  CAS  PubMed  Google Scholar 

  21. Baron M, Risch N, Mendlewicz J . Age at onset in bipolar-related major affective illness: clinical and genetic implications. J Psychiatr Res 1982; 17: 5–20.

    Article  PubMed  Google Scholar 

  22. Leboyer M, Bellivier F, McKeon P, Albus M, Borrman M, Perez-Diaz F et al. Age at onset and gender resemblance in bipolar siblings. Psychiatr Res 1998; 81: 125–131.

    Article  CAS  Google Scholar 

  23. Spitzer RL, Williams JBW, Gibbon M, First MB . The structured clinical interview for DSM-III-R (SCID) I: history, rationale, and description. Arch Gen Psychiatry 1992; 49: 624–629.

    Article  CAS  PubMed  Google Scholar 

  24. Fangerau H, Ohlraun S, Granath RO, Nöthen MM, Rietschel M, Schulze TG . Computer-assisted phenotype characterization for genetic research in psychiatry. Hum Hered 2004; 58: 122–130.

    Article  PubMed  Google Scholar 

  25. Bellivier F, Golmard JL, Rietschel M, Schulze TG, Malafosse A, Preisig M et al. Age at onset in bipolar I affective disorder: further evidence for three subgroups. Am J Psychiatry 2003; 160: 999–1001.

    Article  PubMed  Google Scholar 

  26. Kennedy N, Everitt B, Boydell J, Van Os J, Jones PB, Murray RM . Incidence and distribution of first-episode mania by age: results from a 35-year study. Psychol Med. 2005; 35: 855–863.

    Article  CAS  PubMed  Google Scholar 

  27. Hamshere ML, Gordon-Smith K, Forty L, Jones L, Caesar S, Fraser C et al. Age-at-onset in bipolar-I disorder: mixture analysis of 1369 cases identifies three distinct clinical sub-groups. J Affect Disord 2009; 116: 23–29.

    Article  PubMed  Google Scholar 

  28. S.A.G.E. 6.1.0. Statistical analysis for genetic epidemiology. 2010; http://darwin.cwru.edu/sage/.

  29. Grigoroiu-Serbanescu M, Rietschel M, Paul T, Schulze TG, Noethen MM, Cichon S et al. Two or three age-of-onset groups in bipolar I disorder? Findings of commingling analysis in Romanian and German bipolar I patients. Eur Psychiatry 2010; 25 (Suppl 1): 1428.

    Article  Google Scholar 

  30. Krawczak M, Nikolaus S, von Eberstein H, Croucher PJ, El Mokhtari NE, Schreiber S . PopGen: population-based recruitment of patients and controls for the analysis of complex genotype-phenotype relationships. Community Genet 2006; 9: 55–61.

    PubMed  Google Scholar 

  31. Schmermund A, Möhlenkamp S, Stang A, Grönemeyer D, Seibel R, Hirche H et al. Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged subjects: rationale and design of the Heinz Nixdorf RECALL Study. Risk factors, evaluation of coronary calcium and lifestyle. Am Heart J 2002; 144: 212–218.

    Article  PubMed  Google Scholar 

  32. Miller SA, Dykes DD, Polesky HF . A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16: 1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cichon S, Mühleisen TW, Degenhardt FA, Mattheisen M, Miró M, Strohmaier J et al. Genome-wide association study identifies genetic variation in neurocan as susceptibility factor for bipolar disorder. Am J Hum Genet (in press).

  34. Colella S, Yau C, Taylor JM, Mirza G, Butler H, Clouston P et al. QuantiSNP: an objective bayes hidden-markov model to detect and accurately map copy number variation using SNP genotyping data. Nucleic Acids Res 2007; 35: 2013–2025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pruitt KD, Tatusova T, Maglott DR . NCBI reference sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 2005; 33: D501–D504.

    Article  CAS  PubMed  Google Scholar 

  36. Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 2007; 17: 1665–1674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analysis. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Machon O, Backman M, Machonova O, Kozmik Z, Vacik T, Andersen L et al. A dynamic gradient of Wnt signaling controls initiation of neurogenesis in the mammalian cortex and cellular specification in the hippocampus. Dev Biol 2007; 311: 223–237.

    Article  CAS  PubMed  Google Scholar 

  39. Toledo EM, Colombres M, Inestrosa NC . Wnt signaling in neuroprotection and stem cell differentiation. Prog Neurobiol 2008; 86: 281–296.

    Article  CAS  PubMed  Google Scholar 

  40. Iwanaga Y, Chi YH, Miyazato A, Sheleg S, Haller K, Peloponese Jr JM et al. Heterozygous deletion of mitotic arrest-deficient protein 1 (MAD1) increases the incidence of tumors in mice. Cancer Res 2007; 67: 160–166.

    Article  CAS  PubMed  Google Scholar 

  41. Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, Chambert K et al. Whole-genome association study of bipolar disorder. Mol Psychiatry 2008; 13: 558–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Baum AE, Akula N, Cabanero M, Cardona I, Corona W, Klemens B et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 2008; 13: 197–207.

    Article  CAS  PubMed  Google Scholar 

  43. Funato Y, Michiue T, Asashima M, Miki H . The thioredoxinrelated redox-regulating protein nucleoredoxin inhibits Wnt-β- catenin signalling through dishevelled. Nat Cell Biol 2006; 8: 501–508.

    Article  CAS  PubMed  Google Scholar 

  44. Mefford HC, Sharp AJ, Baker C, Itsara A, Jiang Z, Buysse K et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med 2008; 359: 1685–1699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim HG, Kishikawa S, Higgins AW, Seong IS, Donovan DJ, Shen Y et al. Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet 2008; 82: 199–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rujescu D, Ingason A, Cichon S, Pietiläinen OP, Barnes MR, Toulopoulou T et al. Disruption of the neurexin 1 gene is associated with schizophrenia. Hum Mol Genet 2009; 18: 988–996.

    Article  CAS  PubMed  Google Scholar 

  47. Friedman JI, Vrijenhoek T, Markx S, Janssen IM, van der Vliet WA, Faas BH et al. CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy. Mol Psychiatry 2008; 13: 261–266.

    Article  CAS  PubMed  Google Scholar 

  48. Sutcliffe JS, Han MK, Amin T, Kesterson RA, Nurmi EL et al. Partial duplication of the APBA2 gene in chromosome 15q13 corresponds to duplicon structures. BMC Genomics 2003; 4: 15.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sharp AJ, Mefford HC, Li K, Baker C, Skinner C, Stevenson RE et al. A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nat Genet 2008; 40: 322–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kirov G, Grozeva D, Norton N, Ivanov D, Mantripragada KK, Holmans P et al. Support for the involvement of large copy number variants in the pathogenesis of schizophrenia. Hum Mol Genet 2009; 18: 1497–1503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Niklasson L, Rasmussen P, Oskarsdóttir S, Gillberg C . Autism, ADHD, mental retardation and behavior problems in 100 individuals with 22q11 deletion syndrome. Res Dev Disabil 2009; 30: 763–773.

    Article  PubMed  Google Scholar 

  52. Hashimoto R, Okada T, Kato T, Kosuga A, Tatsumi M, Kamijima K et al. The breakpoint cluster region gene on chromosome 22q11 is associated with bipolar disorder. Biol Psychiatry 2005; 57: 1097–1102.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all of the patients who participated in this study. We also thank all of the probands from the community-based cohort of PopGen as well as that of the Heinz Nixdorf Recall (HNR) study, which was established with the support of the Heinz Nixdorf Foundation. The present study was supported by the German Federal Ministry of Education and Research (BMBF) within the context of the National Genome Research Network plus (NGFNplus) and the MooDS-Net (grant 01GS08144 to SC and MMN, grant 01GS08147 to MR). MMN also received support from the Alfried Krupp von Bohlen und Halbach-Stiftung. MGS was supported by the Romanian Ministry for Education and Research (grant 42151/2008 to MGS). Some of the results of this study were obtained using the program package S.A.G.E., which is supported by a U.S. Public Health Service Resource Grant (RR03655) from the National Center for Research Resources. We are grateful to J Sebat (Department of Psychiatry, University of California, San Diego) for his critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Cichon.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Priebe, L., Degenhardt, F., Herms, S. et al. Genome-wide survey implicates the influence of copy number variants (CNVs) in the development of early-onset bipolar disorder. Mol Psychiatry 17, 421–432 (2012). https://doi.org/10.1038/mp.2011.8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.8

Keywords

This article is cited by

Search

Quick links