Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia

Abstract

Upregulation of the immune response may be involved in the pathogenesis of schizophrenia with changes occurring in both peripheral blood and brain tissue. To date, microarray technology has provided a limited view of specific inflammatory transcripts in brain perhaps due to sensitivity issues. Here we used SOLiD Next Generation Sequencing to quantify neuroimmune mRNA expression levels in the dorsolateral prefrontal cortex of 20 individuals with schizophrenia and their matched controls. We detected 798 differentially regulated transcripts present in people with schizophrenia compared with controls. Ingenuity pathway analysis identified the inflammatory response as a key change. Using quantitative real-time PCR we confirmed the changes in candidate cytokines and immune modulators, including interleukin (IL)-6, IL-8, IL-1β and SERPINA3. The density of major histocompatibility complex-II-positive cells morphologically resembling microglia was significantly increased in schizophrenia and correlated with IL-1β expression. A group of individuals, most of whom had schizophrenia, were found to have increased inflammatory mRNA expression. In summary, we have demonstrated changes in an inflammatory response pathway that are present in 40% of people diagnosed with schizophrenia. This suggests that therapies aimed at immune system attenuation in schizophrenia may be of direct benefit in the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Arion D, Unger T, Lewis DA, Levitt P, Mirnics K . Molecular evidence for increased expression of genes related to immune and chaperone function in the prefrontal cortex in schizophrenia. Biol Psychiatry 2007; 62: 711–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aston C, Jiang L, Sokolov BP . Microarray analysis of postmortem temporal cortex from patients with schizophrenia. J Neurosci Res 2004; 77: 858–866.

    Article  CAS  PubMed  Google Scholar 

  3. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001; 98: 4746–4751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maycox PR, Kelly F, Taylor A, Bates S, Reid J, Logendra R et al. Analysis of gene expression in two large schizophrenia cohorts identifies multiple changes associated with nerve terminal function. Mol Psychiatry 2009; 14: 1083–1094.

    Article  CAS  PubMed  Google Scholar 

  5. Saetre P, Emilsson L, Axelsson E, Kreuger J, Lindholm E, Jazin E . Inflammation-related genes up-regulated in schizophrenia brains. BMC Psychiatry 2007; 7: 46.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P . Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000; 28: 53–67.

    Article  CAS  PubMed  Google Scholar 

  7. Wang Z, Gerstein M, Snyder M . RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009; 10: 57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Okoniewski MJ, Miller CJ . Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations. BMC Bioinformatics 2006; 7: 276.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Erbaǧci AB, Herken H, Köylüoglu O, Yilmaz N, Tarakçioglu M . Serum IL-1beta, sIL-2R, IL-6, IL-8 and TNF-alpha in schizophrenic patients, relation with symptomatology and responsiveness to risperidone treatment. Mediators Inflamm 2001; 10: 109–115.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ganguli R, Yang Z, Shurin G, Chengappa KN, Brar JS, Gubbi AV et al. Serum interleukin-6 concentration in schizophrenia: elevation associated with duration of illness. Psychiatry Res 1994; 51: 1–10.

    Article  CAS  PubMed  Google Scholar 

  11. Laan W, Grobbee DE, Selten J-P, Heijnen CJ, Kahn RS, Burger H . Adjuvant aspirin therapy reduces symptoms of schizophrenia spectrum disorders: results from a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry 2010; 71: 520–527.

    Article  CAS  PubMed  Google Scholar 

  12. Theodoropoulou S, Spanakos G, Baxevanis CN, Economou M, Gritzapis AD, Papamichail MP et al. Cytokine serum levels, autologous mixed lymphocyte reaction and surface marker analysis in never medicated and chronically medicated schizophrenic patients. Schizophr Res 2001; 47: 13–25.

    Article  CAS  PubMed  Google Scholar 

  13. Xu M, He L . Convergent evidence shows a positive association of interleukin-1 gene complex locus with susceptibility to schizophrenia in the Caucasian population. Schizophr Res 2010; 120: 131–142.

    Article  PubMed  Google Scholar 

  14. Schwab SG, Hallmayer J, Freimann J, Lerer B, Albus M, Borrmann-Hassenbach M et al. Investigation of linkage and association/linkage disequilibrium of HLA A-, DQA1-, DQB1-, and DRB1-alleles in 69 sib-pair- and 89 trio-families with schizophrenia. Am J Med Genet 2002; 114: 315–320.

    Article  PubMed  Google Scholar 

  15. Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA et al. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011; 43: 969–976.

    Article  CAS  Google Scholar 

  16. van Kammen D, McAllister-Sistilli C, Kelley M, Gurklis J, Yao J . Elevated interleukin-6 in schizophrenia. Psychiatry Res 1999; 87: 129–136.

    Article  CAS  PubMed  Google Scholar 

  17. Kunz M, Ceresér KM, Goi PD, Fries GR, Teixeira AL, Fernandes BS et al. Serum levels of IL-6, IL-10 and TNF-α in patients with bipolar disorder and schizophrenia: differences in pro- and anti-inflammatory balance. Rev Bras Psiquiatr 2011; e-pub ahead of print.

  18. Lin A, Kenis G, Bignotti S, Tura GJ, De Jong R, Bosmans E et al. The inflammatory response system in treatment-resistant schizophrenia: increased serum interleukin-6. Schizophr Res 1998; 32: 9–15.

    Article  CAS  PubMed  Google Scholar 

  19. Naudin J, Mège JL, Azorin JM, Dassa D . Elevated circulating levels of IL-6 in schizophrenia. Schizophr Res 1996; 20: 269–273.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang XY, Zhou DF, Cao LY, Zhang PY, Wu GY, Shen YC . Changes in serum interleukin-2, -6, and -8 levels before and during treatment with risperidone and haloperidol: relationship to outcome in schizophrenia. J Clin Psychiatry 2004; 65: 940–947.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang XY, Zhou DF, Zhang PY, Wu GY, Cao LY, Shen YC . Elevated interleukin-2, interleukin-6 and interleukin-8 serum levels in neuroleptic-free schizophrenia: association with psychopathology. Schizophr Res 2002; 57: 247–258.

    Article  PubMed  Google Scholar 

  22. Aloisi F . Immune function of microglia. Glia 2001; 36: 165–179.

    Article  CAS  PubMed  Google Scholar 

  23. Frank MG, Baratta MV, Sprunger DB, Watkins LR, Maier SF . Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav Immun 2007; 21: 47–59.

    Article  CAS  PubMed  Google Scholar 

  24. Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A . Physiology of microglia. Physiol Rev 2011; 91: 461–553.

    Article  CAS  PubMed  Google Scholar 

  25. Doorduin J, de Vries EFJ, Willemsen ATM, de Groot JC, Dierckx RA, Klein HC . Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 2009; 50: 1801–1807.

    Article  PubMed  Google Scholar 

  26. van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E et al. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry 2008; 64: 820–822.

    Article  PubMed  Google Scholar 

  27. Kurumaji A, Wakai T, Toru M . Decreases in peripheral-type benzodiazepine receptors in postmortem brains of chronic schizophrenics. J Neural Transm 1997; 104: 1361–1370.

    Article  CAS  PubMed  Google Scholar 

  28. Weickert CS, Sheedy D, Rothmond DA, Dedova I, Fung S, Garrick T et al. Selection of reference gene expression in a schizophrenia brain cohort. Aust N Z J Psychiatry 2010; 44: 59–70.

    PubMed  PubMed Central  Google Scholar 

  29. Wood DLA, Xu Q, Pearson JV, Cloonan N, Grimmond SM . X-MATE: a flexible system for mapping short read data. Bioinformatics 2011; 27: 580–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Koehler R, Issac H, Cloonan N, Grimmond SM . The uniqueome: a mappability resource for short-tag sequencing. Bioinformatics 2011; 27: 272–274.

    Article  CAS  PubMed  Google Scholar 

  31. Weickert CS, Elashoff M, Richards AB, Sinclair D, Bahn S, Paabo S et al. Transcriptome analysis of male–female differences in prefrontal cortical development. Mol Psychiatry 2009; 14: 558–561.

    Article  CAS  PubMed  Google Scholar 

  32. Wong J, Webster MJ, Cassano H, Weickert CS . Changes in alternative brain-derived neurotrophic factor transcript expression in the developing human prefrontal cortex. Eur J Neurosci 2009; 29: 1311–1322.

    Article  PubMed  Google Scholar 

  33. Yang Y, Fung SJ, Rothwell A, Tianmei S, Weickert CS . Increased interstitial white matter neuron density in the dorsolateral prefrontal cortex of people with schizophrenia. Biol Psychiatry 2011; 69: 63–70.

    Article  PubMed  Google Scholar 

  34. Bacher J, Wenzig K, Vogler M . SPSS twostep cluster: A first evaluation. Lehrstuhl Soziol 2004.

  35. Fung SJ, Webster MJ, Sivagnanasundaram S, Duncan C, Elashoff M, Weickert CS . Expression of interneuron markers in the dorsolateral prefrontal cortex of the developing human and in schizophrenia. Am J Psychiatry 2010; 167: 1479–1488.

    Article  PubMed  Google Scholar 

  36. Wong J, Hyde TM, Cassano HL, Deep-Soboslay A, Kleinman JE, Weickert CS . Promoter specific alterations of brain-derived neurotrophic factor mRNA in schizophrenia. Neuroscience 2010; 169: 1071–1084.

    Article  CAS  PubMed  Google Scholar 

  37. Lewis DA, González-Burgos G . Neuroplasticity of neocortical circuits in schizophrenia. Neuropsychopharmacology 2008; 33: 141–165.

    Article  PubMed  Google Scholar 

  38. Bilbo SD, Barrientos RM, Eads AS, Northcutt A, Watkins LR, Rudy JW et al. Early-life infection leads to altered BDNF and IL-1beta mRNA expression in rat hippocampus following learning in adulthood. Brain Behav Immun 2008; 22: 451–455.

    Article  CAS  PubMed  Google Scholar 

  39. Bitanihirwe BKY, Peleg-Raibstein D, Mouttet F, Feldon J, Meyer U . Late prenatal immune activation in mice leads to behavioral and neurochemical abnormalities relevant to the negative symptoms of schizophrenia. Neuropsychopharmacology 2010; 35: 2462–2478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oskvig DB, Elkahloun AG, Johnson KR, Phillips TM, Herkenham M . Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response. Brain Behav Immun 2012.

  41. Ackerman KD, Martino M, Heyman R, Moyna NM, Rabin BS . Stressor-induced alteration of cytokine production in multiple sclerosis patients and controls. Psychosom Med 1998; 60: 484–491.

    Article  CAS  PubMed  Google Scholar 

  42. Maes M, Song C, Lin A, De Jongh R, Van Gastel A, Kenis G et al. The effects of psychological stress on humans: increased production of pro-inflammatory cytokines and a Th1-like response in stress-induced anxiety. Cytokine 1998; 10: 313–318.

    Article  CAS  PubMed  Google Scholar 

  43. You Z, Luo C, Zhang W, Chen Y, He J, Zhao Q et al. Pro- and anti-inflammatory cytokines expression in rat′s brain and spleen exposed to chronic mild stress: involvement in depression. Behav Brain Res 2011; 225: 135–141.

    Article  CAS  PubMed  Google Scholar 

  44. Sirota P, Schild K, Elizur A, Djaldetti M, Fishman P . Increased interleukin-1 and interleukin-3 like activity in schizophrenic patients. Prog Neuro-Psychopharmacol Biol Psychiatry 1995; 19: 75–83.

    Article  CAS  Google Scholar 

  45. Kim Y-K, Myint A-M, Verkerk R, Scharpe S, Steinbusch H, Leonard B . Cytokine changes and tryptophan metabolites in medication-naïve and medication-free schizophrenic patients. Neuropsychobiology 2009; 59: 123–129.

    Article  CAS  PubMed  Google Scholar 

  46. Kim YK, Kim L, Lee MS . Relationships between interleukins, neurotransmitters and psychopathology in drug-free male schizophrenics. Schizophr Res 2000; 44: 165–175.

    Article  CAS  PubMed  Google Scholar 

  47. Behrens MM, Ali SS, Dao DN, Lucero J, Shekhtman G, Quick KL et al. Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science 2007; 318: 1645–1647.

    Article  CAS  PubMed  Google Scholar 

  48. Behrens MM, Ali SS, Dugan LL . Interleukin-6 mediates the increase in NADPH-oxidase in the ketamine model of schizophrenia. J Neurosci 2008; 28: 13957–13966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dugan LL, Ali SS, Shekhtman G, Roberts AJ, Lucero J, Quick KL et al. IL-6 mediated degeneration of forebrain GABAergic interneurons and cognitive impairment in aged mice through activation of neuronal NADPH oxidase. PloS ONE 2009; 4: e5518.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Williamson LL, Sholar PW, Mistry RS, Smith SH, Bilbo SD . Microglia and memory: modulation by early-life infection. J Neurosci 2011; 31: 15511–15521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tambuyzer BR, Ponsaerts P, Nouwen EJ . Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol 2009; 85: 352–370.

    Article  CAS  PubMed  Google Scholar 

  52. Gonzalez PV, Schiöth HB, Lasaga M, Scimonelli TN . Memory impairment induced by IL-1beta is reversed by alpha-MSH through central melanocortin-4 receptors. Brain Behav Immun 2009; 23: 817–822.

    Article  CAS  PubMed  Google Scholar 

  53. Hein AM, Stasko MR, Matousek SB, Scott-McKean JJ, Maier SF, Olschowka JA et al. Sustained hippocampal IL-1beta overexpression impairs contextual and spatial memory in transgenic mice. Brain Behav Immun 2010; 24: 243–253.

    Article  CAS  PubMed  Google Scholar 

  54. Oitzl MS, van Oers H, Schöbitz B, de Kloet ER . Interleukin-1 beta, but not interleukin-6, impairs spatial navigation learning. Brain Res 1993; 613: 160–163.

    Article  CAS  PubMed  Google Scholar 

  55. Bayer TA, Buslei R, Havas L, Falkai P . Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci Lett 1999; 271: 126–128.

    Article  CAS  PubMed  Google Scholar 

  56. Radewicz K, Garey LJ, Gentleman SM, Reynolds R . Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol 2000; 59: 137–150.

    Article  CAS  PubMed  Google Scholar 

  57. Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C et al. Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res 2008; 42: 151–157.

    Article  PubMed  Google Scholar 

  58. Togo T, Akiyama H, Kondo H, Ikeda K, Kato M, Iseki E et al. Expression of CD40 in the brain of Alzheimer′s disease and other neurological diseases. Brain Res 2000; 885: 117–121.

    Article  CAS  PubMed  Google Scholar 

  59. Wierzba-Bobrowicz T, Lewandowska E, Lechowicz W, Stepieñ T, Pasennik E . Quantitative analysis of activated microglia, ramified and damage of processes in the frontal and temporal lobes of chronic schizophrenics. Folia Neuropathol 2005; 43: 81–89.

    PubMed  Google Scholar 

  60. Steiner J, Mawrin C, Ziegeler A, Bielau H, Ullrich O, Bernstein H-G et al. Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization. Acta Neuropathol 2006; 112: 305–316.

    Article  CAS  PubMed  Google Scholar 

  61. Aloisi F, Carè A, Borsellino G, Gallo P, Rosa S, Bassani A et al. Production of hemolymphopoietic cytokines (IL-6, IL-8, colony-stimulating factors) by normal human astrocytes in response to IL-1 beta and tumor necrosis factor-alpha. J Immunol 1992; 149: 2358–2366.

    CAS  PubMed  Google Scholar 

  62. Lee SC, Liu W, Dickson DW, Brosnan CF, Berman JW . Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1 beta. J Immunol 1993; 150: 2659–2667.

    CAS  PubMed  Google Scholar 

  63. Ringheim GE, Burgher KL, Heroux JA . Interleukin-6 mRNA expression by cortical neurons in culture: evidence for neuronal sources of interleukin-6 production in the brain. J Neuroimmunol 1995; 63: 113–123.

    Article  CAS  PubMed  Google Scholar 

  64. Wei H, Zou H, Sheikh AM, Malik M, Dobkin C, Brown WT et al. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. J Neuroinflammation 2011; 8: 52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Burton MD, Sparkman NL, Johnson RW . Inhibition of interleukin-6 trans-signaling in the brain facilitates recovery from lipopolysaccharide-induced sickness behavior. J Neuroinflammation 2011; 8: 54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vollenweider F, Herrmann M, Otten U, Nitsch C . Interleukin-6 receptor expression and localization after transient global ischemia in gerbil hippocampus. Neurosci Lett 2003; 341: 49–52.

    Article  CAS  PubMed  Google Scholar 

  67. Gadient RA, Otten U . Interleukin-6 and interleukin-6 receptor mRNA expression in rat central nervous system. Ann NY Acad Sci 1995; 762: 403–406.

    Article  CAS  PubMed  Google Scholar 

  68. Islam O, Gong X, Rose-John S, Heese K . Interleukin-6 and neural stem cells: more than gliogenesis. Mol Biol Cell 2009; 20: 188–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schöbitz B, de Kloet ER, Sutanto W, Holsboer F . Cellular localization of interleukin 6 mRNA and interleukin 6 receptor mRNA in rat brain. Eur J Neurosci 1993; 5: 1426–1435.

    Article  PubMed  Google Scholar 

  70. Mondelli V, Cattaneo A, Belvederi Murri M, Di Forti M, Handley R, Hepgul N et al. Stress and inflammation reduce brain-derived neurotrophic factor expression in first-episode psychosis: a pathway to smaller hippocampal volume. J Clin Psychiatry 2011; 72: 1677–1684.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sánchez-Muñoz I, Sánchez-Franco F, Vallejo M, Fernández A, Palacios N, Fernández M et al. Regulation of somatostatin gene expression by brain derived neurotrophic factor in fetal rat cerebrocortical cells. Brain Res 2011; 1375: 28–40.

    Article  PubMed  Google Scholar 

  72. Ehrlich LC, Hu S, Sheng WS, Sutton RL, Rockswold GL, Peterson PK et al. Cytokine regulation of human microglial cell IL-8 production. J Immunol 1998; 160: 1944–1948.

    CAS  PubMed  Google Scholar 

  73. Huber AR, Kunkel SL, Todd RF, Weiss SJ . Regulation of transendothelial neutrophil migration by endogenous interleukin-8. Science 1991; 254: 99–102.

    Article  CAS  PubMed  Google Scholar 

  74. Müller N, Krause D, Dehning S, Musil R, Schennach-Wolff R, Obermeier M et al. Celecoxib treatment in an early stage of schizophrenia: results of a randomized, double-blind, placebo-controlled trial of celecoxib augmentation of amisulpride treatment. Schizophr Res 2010; 121: 118–124.

    Article  PubMed  Google Scholar 

  75. Levin Y, Wang L, Schwarz E, Koethe D, Leweke FM, Bahn S . Global proteomic profiling reveals altered proteomic signature in schizophrenia serum. Mol Psychiatry 2010; 15: 1088–1100.

    Article  CAS  PubMed  Google Scholar 

  76. Brown AS . The environment and susceptibility to schizophrenia. Prog Neurobiol 2011; 93: 23–58.

    Article  CAS  PubMed  Google Scholar 

  77. Zakharyan R, Petrek M, Arakelyan A, Mrazek F, Atshemyan S, Boyajyan A . Interleukin-6 promoter polymorphism and plasma levels in patients with schizophrenia. Tissue Antigens 2012; e-pub ahead of print.

  78. Akhondzadeh S, Tabatabaee M, Amini H, Ahmadi Abhari SA, Abbasi SH, Behnam B . Celecoxib as adjunctive therapy in schizophrenia: a double-blind, randomized and placebo-controlled trial. Schizophr Res 2007; 90: 179–185.

    Article  PubMed  Google Scholar 

  79. Müller N, Schwarz MJ . Immune System and Schizophrenia. Curr Immunol Rev 2010; 6: 213–220.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Sarah Wagner at Queensland Pathology for performing the SOLiD library preparation and sequencing. We would also like to thank Shan Yuan-Tsai-Chin for her assistance in RNA isolation and Dr Claire Shepherd for her input into the microglia immunohistochemistry analysis. This work was supported by the Schizophrenia Research Institute (Australia), utilizing funding from the Macquarie Group Foundation, New South Wales Ministry of Health, Neuroscience Research Australia, and the University of New South Wales. Tissues were received from the New South Wales Tissue Resource Center at the University of Sydney, which is supported by the National Health and Medical Research Council of Australia, Schizophrenia Research Institute, National Institute of Alcohol Abuse and Alcoholism (NIH (NIAAA) R24AA012725). JW is supported by a National Health and Medical Research Council of Australia (NHMRC) Postdoctoral Training Fellowship (568884).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C S Weickert.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fillman, S., Cloonan, N., Catts, V. et al. Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 18, 206–214 (2013). https://doi.org/10.1038/mp.2012.110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.110

Keywords

This article is cited by

Search

Quick links