Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons

Subjects

Abstract

An increasing number of genetic variants have been implicated in autism spectrum disorders (ASDs), and the functional study of such variants will be critical for the elucidation of autism pathophysiology. Here, we report a de novo balanced translocation disruption of TRPC6, a cation channel, in a non-syndromic autistic individual. Using multiple models, such as dental pulp cells, induced pluripotent stem cell (iPSC)-derived neuronal cells and mouse models, we demonstrate that TRPC6 reduction or haploinsufficiency leads to altered neuronal development, morphology and function. The observed neuronal phenotypes could then be rescued by TRPC6 complementation and by treatment with insulin-like growth factor-1 or hyperforin, a TRPC6-specific agonist, suggesting that ASD individuals with alterations in this pathway may benefit from these drugs. We also demonstrate that methyl CpG binding protein-2 (MeCP2) levels affect TRPC6 expression. Mutations in MeCP2 cause Rett syndrome, revealing common pathways among ASDs. Genetic sequencing of TRPC6 in 1041 ASD individuals and 2872 controls revealed significantly more nonsynonymous mutations in the ASD population, and identified loss-of-function mutations with incomplete penetrance in two patients. Taken together, these findings suggest that TRPC6 is a novel predisposing gene for ASD that may act in a multiple-hit model. This is the first study to use iPSC-derived human neurons to model non-syndromic ASD and illustrate the potential of modeling genetically complex sporadic diseases using such cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. State MW, Levitt P . The conundrums of understanding genetic risks for autism spectrum disorders. Nat Neurosci 2011; 14: 1499–1506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sanders SJ, Ercan-Sencicek AG, Hus V, Luo R, Murtha MT, Moreno-De-Luca D et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 2011; 70: 863–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 2012; 485: 237–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Neale BM, Kou Y, Liu L, Ma'ayan A, Samocha KE, Sabo A et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 2012; 485: 242–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–872.

    Article  CAS  PubMed  Google Scholar 

  6. Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 2010; 143: 527–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Muotri AR, Marchetto MC, Coufal NG, Oefner R, Yeo G, Nakashima K et al. L1 retrotransposition in neurons is modulated by MeCP2. Nature 2010; 468: 443–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tai Y, Feng S, Ge R, Du W, Zhang X, He Z et al. TRPC6 channels promote dendritic growth via the CaMKIV-CREB pathway. J Cell Sci 2008; 121: 2301–2307.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou J, Du W, Zhou K, Tai Y, Yao H, Jia Y et al. Critical role of TRPC6 channels in the formation of excitatory synapses. Nat Neurosci 2008; 11: 741–743.

    Article  CAS  PubMed  Google Scholar 

  10. Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 2007; 17: 1665–1674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Colella S, Yau C, Taylor JM, Mirza G, Butler H, Clouston P et al. QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data. Nucleic Acids Res 2007; 35: 2013–2025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lichter P, Tang CJ, Call K, Hermanson G, Evans GA, Housman D et al. High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 1990; 247: 64–69.

    Article  CAS  PubMed  Google Scholar 

  13. Beltrao-Braga PI, Pignatari GC, Maiorka PC, Oliveira NA, Lizier NF, Wenceslau CV et al. Feeder-free derivation of induced pluripotent stem cells from human immature dental pulp stem cells. Cell Transplant 2011; 20: 1707–1719.

    Article  PubMed  Google Scholar 

  14. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249–264.

    Article  PubMed  Google Scholar 

  15. Tusher VG, Tibshirani R, Chu G . Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001; 98: 5116–5121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Breitling R, Armengaud P, Amtmann A, Herzyk P . Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 2004; 573: 83–92.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang X, Odom DT, Koo SH, Conkright MD, Canettieri G, Best J et al. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci USA 2005; 102: 4459–4464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  19. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002; 3: 0034.1–0034.11.

    Article  Google Scholar 

  20. Muotri AR, Chu VT, Marchetto MC, Deng W, Moran JV, Gage FH . Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 2005; 435: 903–910.

    Article  CAS  PubMed  Google Scholar 

  21. Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 2003; 302: 890–893.

    Article  CAS  PubMed  Google Scholar 

  22. Kim JY, Duan X, Liu CY, Jang MH, Guo JU, Pow-anpongkul N et al. DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron 2009; 63: 761–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y et al. Disrupted-in-schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 2007; 130: 1146–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kang E, Burdick KE, Kim JY, Duan X, Guo JU, Sailor KA et al. Interaction between FEZ1 and DISC1 in regulation of neuronal development and risk for schizophrenia. Neuron 2011; 72: 559–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ge S, Goh EL, Sailor KA, Kitabatake Y, Ming GL, Song H . GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 2006; 439: 589–593.

    Article  CAS  PubMed  Google Scholar 

  26. Fischbach GD, Lord C . The Simons simplex collection: a resource for identification of autism genetic risk factors. Neuron 2010; 68: 192–195.

    Article  CAS  PubMed  Google Scholar 

  27. Xu LM, Li JR, Huang Y, Zhao M, Tang X, Wei L . AutismKB: an evidence-based knowledgebase of autism genetics. Nucleic Acids Res 2012; 40: D1016–D1022.

    Article  CAS  PubMed  Google Scholar 

  28. Braun NN, Reutiman TJ, Lee S, Folsom TD, Fatemi SH . Expression of phosphodiesterase 4 is altered in the brains of subjects with autism. Neuroreport 2007; 18: 1841–1844.

    Article  CAS  PubMed  Google Scholar 

  29. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A et al. Stem cell properties of human dental pulp stem cells. J Dent Res 2002; 81: 531–535.

    Article  CAS  PubMed  Google Scholar 

  30. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 2003; 100: 5807–5812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. d'Aquino R, De Rosa A, Laino G, Caruso F, Guida L, Rullo R et al. Human dental pulp stem cells: from biology to clinical applications. J Exp Zool B Mol Dev Evol 2009; 312B: 408–415.

    Article  CAS  PubMed  Google Scholar 

  32. Griesi-Oliveira K, Sunaga DY, Alvizi L, Vadasz E, Passos-Bueno MR . Stem cells as a good tool to investigate dysregulated biological systems in autism spectrum disorders. Autism Res 2013; 6: 354–361.

    Article  PubMed  Google Scholar 

  33. Kashiwa A, Yoshida H, Lee S, Paladino T, Liu Y, Chen Q et al. Isolation and characterization of novel presenilin binding protein. J Neurochem 2000; 75: 109–116.

    Article  CAS  PubMed  Google Scholar 

  34. Tai Y, Feng S, Du W, Wang Y . Functional roles of TRPC channels in the developing brain. Pflugers Arch 2009; 458: 283–289.

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Jia YC, Cui K, Li N, Zheng ZY, Wang YZ et al. Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 2005; 434: 894–898.

    Article  CAS  PubMed  Google Scholar 

  36. Jia Y, Zhou J, Tai Y, Wang Y . TRPC channels promote cerebellar granule neuron survival. Nat Neurosci 2007; 10: 559–567.

    Article  CAS  PubMed  Google Scholar 

  37. McCall CM, Miliani de Marval PL, Chastain PD 2nd, Jackson SC, He YJ, Kotake Y et al. Human immunodeficiency virus type 1 Vpr-binding protein VprBP, a WD40 protein associated with the DDB1-CUL4 E3 ubiquitin ligase, is essential for DNA replication and embryonic development. Mol Cell Biol 2008; 28: 5621–5633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Leuner K, Kazanski V, Muller M, Essin K, Henke B, Gollasch M et al. Hyperforin–a key constituent of St. John's wort specifically activates TRPC6 channels. Faseb J 2007; 21: 4101–4111.

    Article  CAS  PubMed  Google Scholar 

  39. Muller M, Essin K, Hill K, Beschmann H, Rubant S, Schempp CM et al. Specific TRPC6 channel activation, a novel approach to stimulate keratinocyte differentiation. J Biol Chem 2008; 283: 33942–33954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leuner K, Heiser JH, Derksen S, Mladenov MI, Fehske CJ, Schubert R et al. Simple 2,4-diacylphloroglucinols as classic transient receptor potential-6 activators–identification of a novel pharmacophore. Mol Pharmacol 2010; 77: 368–377.

    Article  CAS  PubMed  Google Scholar 

  41. Chen J, Lin M, Foxe JJ, Pedrosa E, Hrabovsky A, Carroll R et al. Transcriptome comparison of human neurons generated using induced pluripotent stem cells derived from dental pulp and skin fibroblasts. PLoS One 2013; 8: e75682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fiorio Pla A, Maric D, Brazer SC, Giacobini P, Liu X, Chang YH et al. Canonical transient receptor potential 1 plays a role in basic fibroblast growth factor (bFGF)/FGF receptor-1-induced Ca2+ entry and embryonic rat neural stem cell proliferation. J Neurosci 2005; 25: 2687–2701.

    Article  CAS  PubMed  Google Scholar 

  43. Cukier HN, Lee JM, Ma D, Young JI, Mayo V, Butler BL et al. The expanding role of MBD genes in autism: identification of a MECP2 duplication and novel alterations in MBD5, MBD6, and SETDB1. Autism Res 2012; 5: 385–397.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cukier HN, Rabionet R, Konidari I, Rayner-Evans MY, Baltos ML, Wright HH et al. Novel variants identified in methyl-CpG-binding domain genes in autistic individuals. Neurogenetics 2010; 11: 291–303.

    Article  CAS  PubMed  Google Scholar 

  45. Kuwano Y, Kamio Y, Kawai T, Katsuura S, Inada N, Takaki A et al. Autism-associated gene expression in peripheral leucocytes commonly observed between subjects with autism and healthy women having autistic children. PLoS One 2011; 6: e24723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Campos M Jr., Pestana CP, dos Santos AV, Ponchel F, Churchman S, Abdalla-Carvalho CB et al. A MECP2 missense mutation within the MBD domain in a Brazilian male with autistic disorder. Brain Dev 2011; 33: 807–809.

    Article  PubMed  Google Scholar 

  47. Piton A, Gauthier J, Hamdan FF, Lafreniere RG, Yang Y, Henrion E et al. Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. Mol Psychiatry 2011; 16: 867–880.

    Article  CAS  PubMed  Google Scholar 

  48. Dotti MT, Orrico A, De Stefano N, Battisti C, Sicurelli F, Severi S et al. A Rett syndrome MECP2 mutation that causes mental retardation in men. Neurology 2002; 58: 226–230.

    Article  CAS  PubMed  Google Scholar 

  49. Lam CW, Yeung WL, Ko CH, Poon PM, Tong SF, Chan KY et al. Spectrum of mutations in the MECP2 gene in patients with infantile autism and Rett syndrome. J Med Genet 2000; 37: E41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Carney RM, Wolpert CM, Ravan SA, Shahbazian M, Ashley-Koch A, Cuccaro ML et al. Identification of MeCP2 mutations in a series of females with autistic disorder. Pediatr Neurol 2003; 28: 205–211.

    Article  PubMed  Google Scholar 

  51. Nagarajan RP, Hogart AR, Gwye Y, Martin MR, LaSalle JM . Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics 2006; 1: e1–11.

    Article  PubMed  Google Scholar 

  52. Samaco RC, Nagarajan RP, Braunschweig D, LaSalle JM . Multiple pathways regulate MeCP2 expression in normal brain development and exhibit defects in autism-spectrum disorders. Hum Mol Genet 2004; 13: 629–639.

    Article  CAS  PubMed  Google Scholar 

  53. Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 2008; 320: 1224–1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li W, Calfa G, Larimore J, Pozzo-Miller L . Activity-dependent BDNF release and TRPC signaling is impaired in hippocampal neurons of Mecp2 mutant mice. Proc Natl Acad Sci USA 2012; 109: 17087–17092.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C, Fu DD et al. Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci USA 2009; 106: 2029–2034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Khwaja OS, Ho E, Barnes KV, O'Leary HM, Pereira LM, Finkelstein Y et al. Safety, pharmacokinetics, and preliminary assessment of efficacy of mecasermin (recombinant human IGF-1) for the treatment of Rett syndrome. Proc Natl Acad Sci USA 2014; 111: 4596–4601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Leuner K, Li W, Amaral MD, Rudolph S, Calfa G, Schuwald AM et al. Hyperforin modulates dendritic spine morphology in hippocampal pyramidal neurons by activating Ca(2+) -permeable TRPC6 channels. Hippocampus 2012; 23: 40–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ming GL, Song H . Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 2011; 70: 687–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dietrich A, Mederos YSM, Gollasch M, Gross V, Storch U, Dubrovska G et al. Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol Cell Biol 2005; 25: 6980–6989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Beis D, Schwarting RK, Dietrich A . Evidence for a supportive role of classical transient receptor potential 6 (TRPC6) in the exploration behavior of mice. Physiol Behav 102: 245–250.

  61. Pierce K, Courchesne E . Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biol Psychiatry 2001; 49: 655–664.

    Article  CAS  PubMed  Google Scholar 

  62. Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 2007; 39: 25–27.

    Article  CAS  PubMed  Google Scholar 

  63. Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J et al. De novo gene disruptions in children on the autistic spectrum. Neuron 2012; 74: 285–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. O'Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012; 485: 246–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Talkowski ME, Rosenfeld JA, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A et al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 2012; 149: 525–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chailangkarn T, Acab A, Muotri AR . Modeling neurodevelopmental disorders using human neurons. Curr Opin Neurobiol 2012; 22: 785–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sbacchi S, Acquadro F, Calo I, Cali F, Romano V . Functional annotation of genes overlapping copy number variants in autistic patients: focus on axon pathfinding. Curr Genomics 2010; 11: 136–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 2011; 474: 380–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cruz-Martin A, Crespo M, Portera-Cailliau C . Delayed stabilization of dendritic spines in fragile X mice. J Neurosci 2010; 30: 7793–7803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chapleau CA, Larimore JL, Theibert A, Pozzo-Miller L . Modulation of dendritic spine development and plasticity by BDNF and vesicular trafficking: fundamental roles in neurodevelopmental disorders associated with mental retardation and autism. J Neurodev Disord 2009; 1: 185–196.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lonze BE, Riccio A, Cohen S, Ginty DD . Apoptosis, axonal growth defects, and degeneration of peripheral neurons in mice lacking CREB. Neuron 2002; 34: 371–385.

    Article  CAS  PubMed  Google Scholar 

  72. Balschun D, Wolfer DP, Gass P, Mantamadiotis T, Welzl H, Schutz G et al. Does cAMP response element-binding protein have a pivotal role in hippocampal synaptic plasticity and hippocampus-dependent memory? J Neurosci 2003; 23: 6304–6314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dworkin S, Mantamadiotis T . Targeting CREB signalling in neurogenesis. Expert Opin Ther Targets 2010; 14: 869–879.

    Article  CAS  PubMed  Google Scholar 

  74. Hemara-Wahanui A, Berjukow S, Hope CI, Dearden PK, Wu SB, Wilson-Wheeler J et al. A CACNA1F mutation identified in an X-linked retinal disorder shifts the voltage dependence of Cav1.4 channel activation. Proc Natl Acad Sci USA 2005; 102: 7553–7558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Krey JF, Dolmetsch RE . Molecular mechanisms of autism: a possible role for Ca2+ signaling. Curr Opin Neurobiol 2007; 17: 112–119.

    Article  CAS  PubMed  Google Scholar 

  76. Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 2004; 119: 19–31.

    Article  CAS  PubMed  Google Scholar 

  77. Splawski I, Yoo DS, Stotz SC, Cherry A, Clapham DE, Keating MT . CACNA1H mutations in autism spectrum disorders. J Biol Chem 2006; 281: 22085–22091.

    Article  CAS  PubMed  Google Scholar 

  78. Belichenko PV, Oldfors A, Hagberg B, Dahlstrom A . Rett syndrome: 3-D confocal microscopy of cortical pyramidal dendrites and afferents. Neuroreport 1994; 5: 1509–1513.

    Article  CAS  PubMed  Google Scholar 

  79. Marchetto MC, Brennand KJ, Boyer LF, Gage FH . Induced pluripotent stem cells (iPSCs) and neurological disease modeling: progress and promises. Hum Mol Genet 2011; 20: R109–R115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hagerman R, Hoem G, Hagerman P . Fragile X and autism: Intertwined at the molecular level leading to targeted treatments. Mol Autism 2010; 1: 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bear MF, Huber KM, Warren ST . The mGluR theory of fragile X mental retardation. Trends Neurosci 2004; 27: 370–377.

    Article  CAS  PubMed  Google Scholar 

  82. Bozdagi O, Sakurai T, Papapetrou D, Wang X, Dickstein DL, Takahashi N et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism 2010; 1: 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Han S, Tai C, Westenbroek RE, Yu FH, Cheah CS, Potter GB et al. Autistic-like behaviour in Scn1a+/− mice and rescue by enhanced GABA-mediated neurotransmission. Nature 2012; 489: 385–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Muller WE . Current St John's wort research from mode of action to clinical efficacy. Pharmacol Res 2003; 47: 101–109.

    Article  CAS  PubMed  Google Scholar 

  85. Wohr M, Silverman JL, Scattoni ML, Turner SM, Harris MJ, Saxena R et al. Developmental delays and reduced pup ultrasonic vocalizations but normal sociability in mice lacking the postsynaptic cell adhesion protein neuroligin2. Behav Brain Res 2012; 251: 50–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Silverman JL, Yang M, Lord C, Crawley JN . Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci 2010; 11: 490–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xu JY, Xia QQ, Xia J . A review on the current neuroligin mouse models. Sheng Li Xue Bao 2012; 64: 550–562.

    CAS  PubMed  Google Scholar 

  88. Oddi D, Crusio WE, D'Amato FR, Pietropaolo S . Monogenic mouse models of social dysfunction: Implications for autism. Behav Brain Res 2013; 251: 75–84.

    Article  CAS  PubMed  Google Scholar 

  89. Poot M, Beyer V, Schwaab I, Damatova N, Van't Slot R, Prothero J et al. Disruption of CNTNAP2 and additional structural genome changes in a boy with speech delay and autism spectrum disorder. Neurogenetics 2010; 11: 81–89.

    Article  PubMed  Google Scholar 

  90. Poot M, van der Smagt JJ, Brilstra EH, Bourgeron T . Disentangling the myriad genomics of complex disorders, specifically focusing on autism, epilepsy, and schizophrenia. Cytogenet Genome Res 2011; 135: 228–240.

    Article  CAS  PubMed  Google Scholar 

  91. Leblond CS, Heinrich J, Delorme R, Proepper C, Betancur C, Huguet G et al. Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders. PLoS Genet 2012; 8: e1002521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 2008; 82: 477–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by grants from the California Institute for Regenerative Medicine (CIRM) TR2-01814, the National Institutes of Health through the NIH Director’s New Innovator Award Program (1-DP2-OD006495-01), A NARSAD Independent Investigator Grant to ARM; a NIH predoctoral training grant T32 GM008666 to AA; Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and by NIH (NS047344) and SAFRI to HS; NIH (NS048271, HD069184), NARSAD and MSCRF to GL; NIH (K08MH087639) to ARG; and NIH (RC2MH089956) to MWS. We would like to thank the ASD individuals and their families, Daniela Franco Bueno and Gerson Shigeru Kobayashi for the DPC control samples, Kristin Rose for technical support, and Dr Willmar Schwabe, GmbH & Co, Karlsruhe, Germany, for providing hyperforin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A R Muotri.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griesi-Oliveira, K., Acab, A., Gupta, A. et al. Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Mol Psychiatry 20, 1350–1365 (2015). https://doi.org/10.1038/mp.2014.141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.141

This article is cited by

Search

Quick links