Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

In-depth neuropharmacokinetic analysis of antipsychotics based on a novel approach to estimate unbound target-site concentration in CNS regions: link to spatial receptor occupancy

Abstract

The current study provides a novel in-depth assessment of the extent of antipsychotic drugs transport across the blood–brain barrier (BBB) into various brain regions, as well as across the blood–spinal cord barrier (BSCB) and the blood–cerebrospinal fluid barrier (BCSFB). This is combined with an estimation of cellular barrier transport and a systematic evaluation of nonspecific brain tissue binding. The study is based on the new Combinatory Mapping Approach (CMA), here further developed for the assessment of unbound drug neuropharmacokinetics in regions of interest (ROI), referred as CMA-ROI. We show that differences exist between regions in both BBB transport and in brain tissue binding. The most dramatic spatial differences in BBB transport were found for the P-glycoprotein substrates risperidone (5.4-fold) and paliperidone (4-fold). A higher level of transporter-mediated protection was observed in the cerebellum compared with other brain regions with a more pronounced efflux for quetiapine, risperidone and paliperidone. The highest BBB penetration was documented in the frontal cortex, striatum and hippocampus (haloperidol, olanzapine), indicating potential influx mechanisms. BSCB transport was in general characterized by more efficient efflux compared with the brain regions. Regional tissue binding was significantly different for haloperidol, clozapine, risperidone and quetiapine (maximally 1.9-fold). Spatial differences in local unbound concentrations were found to significantly influence cortical 5-HT2A receptor occupancy for risperidone and olanzapine. In conclusion, the observed regional differences in BBB penetration may potentially be important factors contributing to variations in therapeutic effect and side effect profiles among antipsychotic drugs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Kapur S, Zipursky R, Roy P, Jones C, Remington G, Reed K et al. The relationship between D2 receptor occupancy and plasma levels on low dose oral haloperidol: a PET study. Psychopharmacology 1997; 131: 148–152.

    Article  CAS  PubMed  Google Scholar 

  2. Remington G, Kapur S, Zipursky R . The relationship between risperidone plasma levels and dopamine D2 occupancy: a positron emission tomographic study. J Clin Psychopharmacol 1998; 18: 82–83.

    Article  CAS  PubMed  Google Scholar 

  3. Kapur S, Zipursky R, Jones C, Remington G, Houle S . Relationship between dopamine D(2) occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry 2000; 157: 514–520.

    Article  CAS  PubMed  Google Scholar 

  4. Haslemo T, Loryan I, Ueda N, Mannheimer B, Bertilsson L, Ingelman-Sundberg M et al. UGT1A4*3 encodes significantly increased glucuronidation of olanzapine in patients on maintenance treatment and in recombinant systems. Clin Pharmacol Ther 2012; 92: 221–227.

    Article  CAS  PubMed  Google Scholar 

  5. Kim E, Howes OD, Kim BH, Jeong JM, Lee JS, Jang IJ et al. Predicting brain occupancy from plasma levels using PET: superiority of combining pharmacokinetics with pharmacodynamics while modeling the relationship. J Cereb Blood Flow Metab 2012; 32: 759–768.

    Article  CAS  PubMed  Google Scholar 

  6. Tauscher J, Jones C, Remington G, Zipursky RB, Kapur S . Significant dissociation of brain and plasma kinetics with antipsychotics. Mol Psychiatry 2002; 7: 317–321.

    Article  CAS  PubMed  Google Scholar 

  7. Kornhuber J, Wiltfang J, Riederer P, Bleich S . Neuroleptic drugs in the human brain: clinical impact of persistence and region-specific distribution. Eur Arch Psychiatry Clin Neurosci 2006; 256: 274–280.

    Article  PubMed  Google Scholar 

  8. Merrick TC, Felo JA, Jenkins AJ . Tissue distribution of olanzapine in a postmortem case. Am J Forensic Med Pathol 2001; 22: 270–274.

    Article  CAS  PubMed  Google Scholar 

  9. Rodda KE, Dean B, McIntyre IM, Drummer OH . Brain distribution of selected antipsychotics in schizophrenia. Forensic Sci Int 2006; 157: 121–130.

    Article  CAS  PubMed  Google Scholar 

  10. Aravagiri M, Marder SR, Wirshing D, Wirshing WC . Plasma concentrations of risperidone and its 9-hydroxy metabolite and their relationship to dose in schizophrenic patients: simultaneous determination by a high performance liquid chromatography with electrochemical detection. Pharmacopsychiatry 1998; 31: 102–109.

    Article  CAS  PubMed  Google Scholar 

  11. Asmal L, Flegar SJ, Wang J, Rummel-Kluge C, Komossa K, Leucht S . Quetiapine versus other atypical antipsychotics for schizophrenia. Cochrane Database Syst Rev 2013; 11: CD006625.

    Google Scholar 

  12. Park HS, Kim E, Moon BS, Lim NH, Lee BC, Kim SE . In vivo tissue pharmacokinetics of carbon-11-labeled clozapine in healthy volunteers: a positron emission tomography study. CPT Pharmacometrics Syst Pharmacol 2015; 4: 305–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hammarlund-Udenaes M, Friden M, Syvanen S, Gupta A . On the rate and extent of drug delivery to the brain. Pharmaceut Res 2008; 25: 1737–1750.

    Article  CAS  Google Scholar 

  14. Loryan I, Friden M, Hammarlund-Udenaes M . The brain slice method for studying drug distribution in the CNS. Fluids Barriers CNS 2013; 10: 6.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Loryan I, Hammarlund-Udenaes M. Drug discovery methods for studying brain drug delivery and distribution. In: Hammarlund-Udenaes M, de Lange ECM, Thorne RG (eds). Drug Delivery to the Brain. Springer: New York, USA, 2014, pp 271–316.

    Google Scholar 

  16. Friden M, Gupta A, Antonsson M, Bredberg U, Hammarlund-Udenaes M . In vitro methods for estimating unbound drug concentrations in the brain interstitial and intracellular fluids. Drug Metab Dispos 2007; 35: 1711–1719.

    Article  CAS  PubMed  Google Scholar 

  17. Bostrom E, Hammarlund-Udenaes M, Simonsson US . Blood-brain barrier transport helps to explain discrepancies in in vivo potency between oxycodone and morphine. Anesthesiology 2008; 108: 495–505.

    Article  PubMed  Google Scholar 

  18. Kalvass JC, Olson ER, Cassidy MP, Selley DE, Pollack GM . Pharmacokinetics and pharmacodynamics of seven opioids in P-glycoprotein-competent mice: assessment of unbound brain EC50,u and correlation of in vitro, preclinical, and clinical data. J Pharmacol Exp Ther 2007; 323: 346–355.

    Article  CAS  PubMed  Google Scholar 

  19. Watson J, Wright S, Lucas A, Clarke KL, Viggers J, Cheetham S et al. Receptor occupancy and brain free fraction. Drug Metab Dispos 2009; 37: 753–760.

    Article  CAS  PubMed  Google Scholar 

  20. Liu X, Vilenski O, Kwan J, Apparsundaram S, Weikert R . Unbound brain concentration determines receptor occupancy: a correlation of drug concentration and brain serotonin and dopamine reuptake transporter occupancy for eighteen compounds in rats. Drug Metab Dispos 2009; 37: 1548–1556.

    Article  CAS  PubMed  Google Scholar 

  21. Maurer TS, Debartolo DB, Tess DA, Scott DO . Relationship between exposure and nonspecific binding of thirty-three central nervous system drugs in mice. Drug Metab Dispos 2005; 33: 175–181.

    Article  CAS  PubMed  Google Scholar 

  22. Ekblom M, Gardmark M, Hammarlund-Udenaes M . Estimation of unbound concentrations of morphine from microdialysate concentrations by use of nonlinear regression analysis in vivo and in vitro during steady state conditions. Life Sci 1992; 51: 449–460.

    Article  CAS  PubMed  Google Scholar 

  23. Bouw MR, Gardmark M, Hammarlund-Udenaes M . Pharmacokinetic-pharmacodynamic modelling of morphine transport across the blood-brain barrier as a cause of the antinociceptive effect delay in rats—a microdialysis study. Pharmaceut Res 2000; 17: 1220–1227.

    Article  CAS  Google Scholar 

  24. Hammarlund-Udenaes M . Active-site concentrations of chemicals - are they a better predictor of effect than plasma/organ/tissue concentrations? Basic Clin Pharmacol Toxicol 2010; 106: 215–220.

    Article  CAS  PubMed  Google Scholar 

  25. Hammarlund-Udenaes M. Pharmacokinetic concepts in brain drug delivery. In: Hammarlund-Udenaes M, de Lange ECM, Thorne RG (eds). Drug Delivery to the Brain. Springer: New York, USA, 2014, pp 127–161..

    Google Scholar 

  26. Shen DD, Artru AA, Adkison KK . Principles and applicability of CSF sampling for the assessment of CNS drug delivery and pharmacodynamics. Adv Drug Deliv Rev 2004; 56: 1825–1857.

    Article  CAS  PubMed  Google Scholar 

  27. Friden M, Winiwarter S, Jerndal G, Bengtsson O, Wan H, Bredberg U et al. Structure-brain exposure relationships in rat and human using a novel data set of unbound drug concentrations in brain interstitial and cerebrospinal fluids. J Med Chem 2009; 52: 6233–6243.

    Article  CAS  PubMed  Google Scholar 

  28. Loryan I, Sinha V, Mackie C, Van Peer A, Drinkenburg W, Vermeulen A et al. Mechanistic understanding of brain drug disposition to optimize the selection of potential neurotherapeutics in drug discovery. Pharmaceut Res 2014 2014/08/01 31: 2203–2219.

    Article  CAS  Google Scholar 

  29. Glowinski J, Iversen LL . Regional studies of catecholamines in the rat brain-I. J Neurochem 1966; 13: 655–669.

    Article  CAS  PubMed  Google Scholar 

  30. Chiu K, Lau WM, Lau HT, So K-F, Chang RC-C . Micro-dissection of rat brain for RNA or protein extraction from specific brain region. J Vis Exp 2007; 269.

  31. Kalvass JC, Maurer TS . Influence of nonspecific brain and plasma binding on CNS exposure: implications for rational drug discovery. Biopharm Drug Dispos 2002; 23: 327–338.

    Article  CAS  PubMed  Google Scholar 

  32. Friden M, Ducrozet F, Middleton B, Antonsson M, Bredberg U, Hammarlund-Udenaes M . Development of a high-throughput brain slice method for studying drug distribution in the central nervous system. Drug Metab Dispos 2009; 37: 1226–1233.

    Article  CAS  PubMed  Google Scholar 

  33. Hill AV . The heat produced in contracture and muscular tone. J Physiol 1910; 40: 389–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schotte A, Janssen PF, Gommeren W, Luyten WH, Van Gompel P, Lesage AS et al. Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology 1996; 124: 57–73.

    Article  CAS  PubMed  Google Scholar 

  35. Motulsky HJ (ed). Prism 5 Statistics Guide. GraphPad Software Inc.: San Diego, CA, USA, 2007.

    Google Scholar 

  36. Friden M, Ljungqvist H, Middleton B, Bredberg U, Hammarlund-Udenaes M . Improved measurement of drug exposure in the brain using drug-specific correction for residual blood. J Cereb Blood Flow Metab 2010; 30: 150–161.

    Article  CAS  PubMed  Google Scholar 

  37. Mullauer J, Kuntner C, Bauer M, Bankstahl JP, Muller M, Voskuyl RA et al. Pharmacokinetic modeling of P-glycoprotein function at the rat and human blood-brain barriers studied with (R)-[11C]verapamil positron emission tomography. EJNMMI Res 2012; 2: 58.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kuntner C, Bankstahl JP, Bankstahl M, Stanek J, Wanek T, Stundner G et al. Dose-response assessment of tariquidar and elacridar and regional quantification of P-glycoprotein inhibition at the rat blood-brain barrier using (R)-[(11)C]verapamil PET. Eur J Nucl Med Mol Imaging 2010; 37: 942–953.

    Article  CAS  PubMed  Google Scholar 

  39. Bauer M, Karch R, Neumann F, Wagner CC, Kletter K, Muller M et al. Assessment of regional differences in tariquidar-induced P-glycoprotein modulation at the human blood-brain barrier. J Cereb Blood Flow Metab 2010; 30: 510–515.

    Article  CAS  PubMed  Google Scholar 

  40. Bartanusz V, Jezova D, Alajajian B, Digicaylioglu M . The blood-spinal cord barrier: morphology and clinical implications. Ann Neurol 2011; 70: 194–206.

    Article  PubMed  Google Scholar 

  41. Chen X, Loryan I, Payan M, Keep RF, Smith DE, Hammarlund-Udenaes M . Effect of transporter inhibition on the distribution of cefadroxil in rat brain. Fluids Barriers CNS 2014; 11: 25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Friden M, Bergstrom F, Wan H, Rehngren M, Ahlin G, Hammarlund-Udenaes M et al. Measurement of unbound drug exposure in brain: modeling of pH partitioning explains diverging results between the brain slice and brain homogenate methods. Drug Metab Dispos 2011; 39: 353–362.

    Article  CAS  PubMed  Google Scholar 

  43. Kaufmann AM, Krise JP . Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications. J Pharm Sci 2007; 96: 729–746.

    Article  CAS  PubMed  Google Scholar 

  44. Daniel WA, Wojcikowski J, Palucha A . Intracellular distribution of psychotropic drugs in the grey and white matter of the brain: the role of lysosomal trapping. Br J Pharmacol 2001; 134: 807–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Loryan I, Sinha V, Mackie C, Van Peer A, Drinkenburg W, Vermeulen A et al. Mechanistic understanding of brain drug disposition to optimize the selection of potential neurotherapeutics in drug discovery. Pharmaceut Res 2014; 13: 2203–2219.

    Article  Google Scholar 

  46. Loryan I, Sinha V, Mackie C, Van Peer A, Drinkenburg WH, Vermeulen A et al. Molecular properties determining unbound intracellular and extracellular brain exposure of CNS drug candidates. Mol Pharmaceut 2014; 12: 520–532.

    Article  Google Scholar 

  47. Svendsen CN, Hrbek CC, Casendino M, Nichols RD, Bird ED . Concentration and distribution of thioridazine and metabolites in schizophrenic post-mortem brain tissue. Psychiatry Res 1988; 23: 1–10.

    Article  CAS  PubMed  Google Scholar 

  48. Shalev H, Serlin Y, Friedman A . Breaching the blood-brain barrier as a gate to psychiatric disorder. Cardiovasc Psychiatry Neurol 2009; 2009: 7.

    Article  Google Scholar 

  49. de Klerk OL, Willemsen AT, Bosker FJ, Bartels AL, Hendrikse NH, den Boer JA et al. Regional increase in P-glycoprotein function in the blood-brain barrier of patients with chronic schizophrenia: a PET study with [(11)C]verapamil as a probe for P-glycoprotein function. Psychiatry Res 2010; 183: 151–156.

    Article  CAS  PubMed  Google Scholar 

  50. Schwarz MJ, Ackenheil M, Riedel M, Muller N . Blood-cerebrospinal fluid barrier impairment as indicator for an immune process in schizophrenia. Neurosci Lett 1998; 253: 201–203.

    Article  CAS  PubMed  Google Scholar 

  51. Zetterberg H, Jakobsson J, Redsater M, Andreasson U, Palsson E, Ekman CJ et al. Blood-cerebrospinal fluid barrier dysfunction in patients with bipolar disorder in relation to antipsychotic treatment. Psychiatry Res 2014; 217: 143–146.

    Article  CAS  PubMed  Google Scholar 

  52. Lewis S, Lieberman J . CATIE and CUtLASS: can we handle the truth? Br J Psychiatry 2008; 192: 161–163.

    Article  PubMed  Google Scholar 

  53. Leucht S, Cipriani A, Spineli L, Mavridis D, Orey D, Richter F et al. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet 2013; 382: 951–962.

    Article  CAS  PubMed  Google Scholar 

  54. Kapur S, Langlois X, Vinken P, Megens AA, De Coster R, Andrews JS . The differential effects of atypical antipsychotics on prolactin elevation are explained by their differential blood-brain disposition: a pharmacological analysis in rats. J Pharmacol Exp Ther 2002; 302: 1129–1134.

    Article  CAS  PubMed  Google Scholar 

  55. Ashraf T, Kao A, Bendayan R . Functional expression of drug transporters in glial cells: potential role on drug delivery to the CNS. Adv Pharmacol 2014; 71: 45–111.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the excellent assistance of Jessica Dunhall (Uppsala University) for performing the neuropharmacokinetic studies and testing cerebral microdialysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Loryan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loryan, I., Melander, E., Svensson, M. et al. In-depth neuropharmacokinetic analysis of antipsychotics based on a novel approach to estimate unbound target-site concentration in CNS regions: link to spatial receptor occupancy. Mol Psychiatry 21, 1527–1536 (2016). https://doi.org/10.1038/mp.2015.229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.229

This article is cited by

Search

Quick links