Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular interaction between type 2 diabetes and Alzheimer’s disease through cross-seeding of protein misfolding

Abstract

Numerous epidemiological studies have shown a significantly higher risk for development of Alzheimer’s disease (AD) in patients affected by type 2 diabetes (T2D), but the molecular mechanism responsible for this association is presently unknown. Both diseases are considered protein misfolding disorders associated with the accumulation of protein aggregates; amyloid-beta (Aβ) and tau in the brain during AD, and islet amyloid polypeptide (IAPP) in pancreatic islets in T2D. Formation and accumulation of these proteins follows a seeding-nucleation model, where a misfolded aggregate or ‘seed’ promotes the rapid misfolding and aggregation of the native protein. Our underlying hypothesis is that misfolded IAPP produced in T2D potentiates AD pathology by cross-seeding Aβ, providing a molecular explanation for the link between these diseases. Here, we examined how misfolded IAPP affects Aβ aggregation and AD pathology in vitro and in vivo. We observed that addition of IAPP seeds accelerates Aβ aggregation in vitro in a seeding-like manner and the resulting fibrils are composed of both peptides. Transgenic animals expressing both human proteins exhibited exacerbated AD-like pathology compared with AD transgenic mice or AD transgenic animals with type 1 diabetes (T1D). Remarkably, IAPP colocalized with amyloid plaques in brain parenchymal deposits, suggesting that these peptides may directly interact and aggravate the disease. Furthermore, inoculation of pancreatic IAPP aggregates into the brains of AD transgenic mice resulted in more severe AD pathology and significantly greater memory impairments than untreated animals. These data provide a proof-of-concept for a new disease mechanism involving the interaction of misfolded proteins through cross-seeding events which may contribute to accelerate or exacerbate disease pathogenesis. Our findings could shed light on understanding the linkage between T2D and AD, two of the most prevalent protein misfolding disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Chiti F, Dobson CM . Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 2006; 75: 333–366.

    Article  CAS  PubMed  Google Scholar 

  2. Soto C . Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 2003; 4: 49–60.

    Article  CAS  PubMed  Google Scholar 

  3. Clinton LK, Blurton-Jones M, Myczek K, Trojanowski JQ, LaFerla FM . Synergistic Interactions between Abeta, tau, and alpha-synuclein: acceleration of neuropathology and cognitive decline. J Neurosci 2010; 30: 7281–7289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Giasson BI, Lee VM, Trojanowski JQ . Interactions of amyloidogenic proteins. Neuromolecular Med 2003; 4: 49–58.

    Article  CAS  PubMed  Google Scholar 

  5. Walker L, McAleese KE, Thomas AJ, Johnson M, Martin-Ruiz C, Parker C et al. Neuropathologically mixed Alzheimer's and Lewy body disease: burden of pathological protein aggregates differs between clinical phenotypes. Acta Neuropathol 2015; 129: 729–748.

    Article  CAS  PubMed  Google Scholar 

  6. Kovacs GG, Alafuzoff I, Al-Sarraj S, Arzberger T, Bogdanovic N, Capellari S et al. Mixed brain pathologies in dementia: the BrainNet Europe consortium experience. Dement Geriatr Cogn Disord 2008; 26: 343–350.

    Article  PubMed  Google Scholar 

  7. Barker WW, Luis CA, Kashuba A, Luis M, Harwood DG, Loewenstein D et al. Relative frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the State of Florida Brain Bank. Alzheimer Dis Assoc Disord 2002; 16: 203–212.

    Article  PubMed  Google Scholar 

  8. Guerrero-Munoz MJ, Castillo-Carranza DL, Krishnamurthy S, Paulucci-Holthauzen AA, Sengupta U, Lasagna-Reeves CA et al. Amyloid-beta oligomers as a template for secondary amyloidosis in Alzheimer's disease. Neurobiol Dis 2014; 71: 14–23.

    Article  CAS  PubMed  Google Scholar 

  9. Jackson K, Barisone GA, Diaz E, Jin LW, Decarli C, Despa F . Amylin deposition in the brain: A second amyloid in Alzheimer disease? Ann Neurol 2013; 74: 517–526.

    Article  CAS  PubMed  Google Scholar 

  10. Miklossy J, Qing H, Radenovic A, Kis A, Vileno B, Laszlo F et al. Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes. Neurobiol Aging 2010; 31: 1503–1515.

    Article  CAS  PubMed  Google Scholar 

  11. Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P . Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 2006; 5: 64–74.

    Article  PubMed  Google Scholar 

  12. Luchsinger JA, Reitz C, Patel B, Tang MX, Manly JJ, Mayeux R . Relation of diabetes to mild cognitive impairment. Arch Neurol 2007; 64: 570–575.

    Article  PubMed  Google Scholar 

  13. Kopf D, Frolich L . Risk of incident Alzheimer's disease in diabetic patients: a systematic review of prospective trials. J Alzheimers Dis 2009; 16: 677–685.

    Article  PubMed  Google Scholar 

  14. Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM . Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 1999; 53: 1937–1942.

    Article  CAS  PubMed  Google Scholar 

  15. Velayudhan L, Poppe M, Archer N, Proitsi P, Brown RG, Lovestone S . Risk of developing dementia in people with diabetes and mild cognitive impairment. Br J Psychiatry 2010; 196: 36–40.

    Article  PubMed  Google Scholar 

  16. Morris JK, Vidoni ED, Honea RA, Burns JM . Impaired glycemia increases disease progression in mild cognitive impairment. Neurobiol Aging 2014; 35: 585–589.

    Article  CAS  PubMed  Google Scholar 

  17. Janson J, Laedtke T, Parisi JE, O'Brien P, Petersen RC, Butler PC . Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 2004; 53: 474–481.

    Article  CAS  PubMed  Google Scholar 

  18. Qiu WQ, Wallack M, Dean M, Liebson E, Mwamburi M, Zhu H . Association between amylin and amyloid-beta peptides in plasma in the context of apolipoprotein E4 allele. PLoS One 2014; 9: e88063.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Biessels GJ, Kappelle LJ . Increased risk of Alzheimer's disease in type II diabetes: insulin resistance of the brain or insulin-induced amyloid pathology? Biochem Soc Trans 2005; 33: 1041–1044.

    Article  CAS  PubMed  Google Scholar 

  20. Jarrett JT, Lansbury PT Jr. . Seeding "one-dimensional crystallization" of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 1993; 73: 1055–1058.

    Article  CAS  PubMed  Google Scholar 

  21. Soto C, Estrada L, Castilla J . Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. Trends Biochem Sci 2006; 31: 150–155.

    Article  CAS  PubMed  Google Scholar 

  22. Morales R, Moreno-Gonzalez I, Soto C . Cross-seeding of misfolded proteins: implications for etiology and pathogenesis of protein misfolding diseases. PLoS Pathog 2013; 9: e1003537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yan J, Fu X, Ge F, Zhang B, Yao J, Zhang H et al. Cross-seeding and cross-competition in mouse apolipoprotein A-II amyloid fibrils and protein A amyloid fibrils. Am J Pathol 2007; 171: 172–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vitrenko YA, Gracheva EO, Richmond JE, Liebman SW . Visualization of aggregation of the Rnq1 prion domain and cross-seeding interactions with Sup35NM. J Biol Chem 2007; 282: 1779–1787.

    Article  CAS  PubMed  Google Scholar 

  25. Krebs MR, Morozova-Roche LA, Daniel K, Robinson CV, Dobson CM . Observation of sequence specificity in the seeding of protein amyloid fibrils. Protein Sci 2004; 13: 1933–1938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. O'Nuallain B, Williams AD, Westermark P, Wetzel R . Seeding specificity in amyloid growth induced by heterologous fibrils. J Biol Chem 2004; 279: 17490–17499.

    Article  CAS  PubMed  Google Scholar 

  27. Ono K, Takahashi R, Ikeda T, Mizuguchi M, Hamaguchi T, Yamada M . Exogenous amyloidogenic proteins function as seeds in amyloid beta-protein aggregation. Biochim Biophys Acta 2014; 1842: 646–653.

    Article  CAS  PubMed  Google Scholar 

  28. Andreetto E, Yan LM, Tatarek-Nossol M, Velkova A, Frank R, Kapurniotu A . Identification of hot regions of the Abeta-IAPP interaction interface as high-affinity binding sites in both cross- and self-association. Angew Chem Int Ed Engl 2010; 49: 3081–3085.

    Article  CAS  PubMed  Google Scholar 

  29. Shahnawaz M, Soto C . Microcin amyloid fibrils are a reservoir of toxic oligomeric species. J Biol Chem 2012; 287: 11665–11676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 1996; 274: 99–102.

    Article  CAS  PubMed  Google Scholar 

  31. Janson J, Soeller WC, Roche PC, Nelson RT, Torchia AJ, Kreutter DK et al. Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide. Proc Natl Acad Sci USA 1996; 93: 7283–7288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tesch GH, Allen TJ . Rodent models of streptozotocin-induced diabetic nephropathy. Nephrology (Carlton) 2007; 12: 261–266.

    Article  Google Scholar 

  33. Luchsinger JA . Type 2 diabetes and cognitive impairment: linking mechanisms. J Alzheimers Dis 2012; 30: S185–S198.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yamamoto N, Matsubara T, Sobue K, Tanida M, Kasahara R, Naruse K et al. Brain insulin resistance accelerates Abeta fibrillogenesis by inducing GM1 ganglioside clustering in the presynaptic membranes. J Neurochem 2012; 121: 619–628.

    Article  CAS  PubMed  Google Scholar 

  35. Bourdel-Marchasson I, Lapre E, Laksir H, Puget E . Insulin resistance, diabetes and cognitive function: consequences for preventative strategies. Diabetes Metab 2010; 36: 173–181.

    Article  CAS  PubMed  Google Scholar 

  36. Reger MA, Watson GS, Green PS, Wilkinson CW, Baker LD, Cholerton B et al. Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology 2008; 70: 440–448.

    Article  CAS  PubMed  Google Scholar 

  37. Haj-ali V, Mohaddes G, Babri SH . Intracerebroventricular insulin improves spatial learning and memory in male Wistar rats. Behav Neurosci 2009; 123: 1309–1314.

    Article  CAS  PubMed  Google Scholar 

  38. Kim B, Backus C, Oh S, Hayes JM, Feldman EL . Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes. Endocrinology 2009; 150: 5294–5301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ke YD, Delerue F, Gladbach A, Gotz J, Ittner LM . Experimental diabetes mellitus exacerbates tau pathology in a transgenic mouse model of Alzheimer's disease. PLoS One 2009; 4: e7917.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Escribano L, Simon AM, Gimeno E, Cuadrado-Tejedor M, Lopez de MR, Garcia-Osta A et al. Rosiglitazone rescues memory impairment in Alzheimer's transgenic mice: mechanisms involving a reduced amyloid and tau pathology. Neuropsychopharmacology 2010; 35: 1593–1604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McClean PL, Parthsarathy V, Faivre E, Holscher C . The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer's disease. J Neurosci 2011; 31: 6587–6594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Watson GS, Cholerton BA, Reger MA, Baker LD, Plymate SR, Asthana S et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry 2005; 13: 950–958.

    PubMed  Google Scholar 

  43. Risner ME, Saunders AM, Altman JF, Ormandy GC, Craft S, Foley IM et al. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer's disease. Pharmacogenomics J 2006; 6: 246–254.

    Article  CAS  PubMed  Google Scholar 

  44. Hanyu H, Sato T, Kiuchi A, Sakurai H, Iwamoto T . Pioglitazone improved cognition in a pilot study on patients with Alzheimer's disease and mild cognitive impairment with diabetes mellitus. J Am Geriatr Soc 2009; 57: 177–179.

    Article  PubMed  Google Scholar 

  45. Oskarsson ME, Paulsson JF, Schultz SW, Ingelsson M, Westermark P, Westermark GT . In vivo seeding and cross-seeding of localized amyloidosis: a molecular link between type 2 diabetes and Alzheimer disease. Am J Pathol 2015; 185: 834–846.

    Article  CAS  PubMed  Google Scholar 

  46. Janson J, Ashley RH, Harrison D, McIntyre S, Butler PC . The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 1999; 48: 491–498.

    Article  CAS  PubMed  Google Scholar 

  47. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M et al. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 1998; 95: 6448–6453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Srodulski S, Sharma S, Bachstetter AB, Brelsfoard JM, Pascual C, Xie XS et al. Neuroinflammation and neurologic deficits in diabetes linked to brain accumulation of amylin. Mol Neurodegener 2014; 9: 30.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Okabayashi S, Shimozawa N, Yasutomi Y, Yanagisawa K, Kimura N . Diabetes mellitus accelerates Abeta pathology in brain accompanied by enhanced GAbeta generation in nonhuman primates. PLoS One 2015; 10: e0117362.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gotz J, Ittner LM, Lim YA . Common features between diabetes mellitus and Alzheimer's disease. Cell Mol Life Sci 2009; 66: 1321–1325.

    Article  CAS  PubMed  Google Scholar 

  51. Jolivalt CG, Hurford R, Lee CA, Dumaop W, Rockenstein E, Masliah E . Type 1 diabetes exaggerates features of Alzheimer's disease in APP transgenic mice. Exp Neurol 2010; 223: 422–431.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Peter C Butler (University of California at Los Angeles) for the donation of the IAPP diabetic colony and Dr Charles Mays (University of Texas Medical School at Houston) for extensive editing of the manuscript. This work was partially funded by NIH grant R01GM100453 to CS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Soto.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno-Gonzalez, I., Edwards III, G., Salvadores, N. et al. Molecular interaction between type 2 diabetes and Alzheimer’s disease through cross-seeding of protein misfolding. Mol Psychiatry 22, 1327–1334 (2017). https://doi.org/10.1038/mp.2016.230

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2016.230

Search

Quick links