Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

DHEA inhibits acute microglia-mediated inflammation through activation of the TrkA-Akt1/2-CREB-Jmjd3 pathway

Abstract

Dehydroepiandrosterone (DHEA) is the most abundant circulating steroid hormone in humans, produced by the adrenals, the gonads and the brain. DHEA was previously shown to bind to the nerve growth factor receptor, tropomyosin-related kinase A (TrkA), and to thereby exert neuroprotective effects. Here we show that DHEA reduces microglia-mediated inflammation in an acute lipopolysaccharide-induced neuro-inflammation model in mice and in cultured microglia in vitro. DHEA regulates microglial inflammatory responses through phosphorylation of TrkA and subsequent activation of a pathway involving Akt1/Akt2 and cAMP response element-binding protein. The latter induces the expression of the histone 3 lysine 27 (H3K27) demethylase Jumonji d3 (Jmjd3), which thereby controls the expression of inflammation-related genes and microglial polarization. Together, our data indicate that DHEA-activated TrkA signaling is a potent regulator of microglia-mediated inflammation in a Jmjd3-dependent manner, thereby providing the platform for potential future therapeutic interventions in neuro-inflammatory pathologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Barrou Z, Charru P, Lidy C . Dehydroepiandrosterone (DHEA) and aging. Arch Gerontol Geriat 1997; 24: 233–241.

    Article  CAS  Google Scholar 

  2. Webb SJ, Geoghegan TE, Prough RA . The biological actions of dehydroepiandrosterone involves multiple receptors. Drug Metab Rev 2006; 38: 89–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maninger N, Wolkowitz OM, Reus VI, Epel ES, Mellon SH . Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front Neuroendocrinol 2009; 30: 65–91.

    Article  CAS  PubMed  Google Scholar 

  4. Alesci S, Koch CA, Bornstein SR, Pacak K . Adrenal androgens regulation and adrenopause. Endocr Regul 2001; 35: 95–100.

    CAS  PubMed  Google Scholar 

  5. Compagnone NA, Mellon SH . Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol 2000; 21: 1–56.

    Article  CAS  PubMed  Google Scholar 

  6. Friess E, Schiffelholz T, Steckler T, Steiger A . Dehydroepiandrosterone - a neurosteroid. Eur J Clin Invest 2000; 30: 46–50.

    Article  CAS  PubMed  Google Scholar 

  7. Koch C, Bornstein S, Pacak K, Chrousos G . How does metyrapone decrease seizures? Neurosurg Rev 1998; 21: 302–303.

    Article  CAS  PubMed  Google Scholar 

  8. Zwain IH, Yen SSC . Neurosteroidogenesis in astrocytes, oligodendrocytes, and neurons of cerebral cortex of rat brain. Endocrinology 1999; 140: 3843–3852.

    Article  CAS  PubMed  Google Scholar 

  9. Gottfried-Blackmore A, Sierra A, Jellinck PH, McEwen BS, Bulloch K . Brain microglia express steroid-converting enzymes in the mouse. J Steroid Biochem 2008; 109: 96–107.

    Article  CAS  Google Scholar 

  10. Prough R, Clark BJ, Klinge CM . Novel mechanisms for DHEA action. J Mol Endocrinol 2016; 56: R139–R155.

    Article  CAS  PubMed  Google Scholar 

  11. Monnet FP, Maurice T . The sigma(1) protein as a target for the non-genomic effects of neuro(active)steroids: Molecular, physiological, and behavioral aspects. J Pharmacol Sci 2006; 100: 93–118.

    Article  CAS  PubMed  Google Scholar 

  12. Charalampopoulos I, Alexaki VI, Lazaridis I, Dermitzaki E, Avlonitis N, Tsatsanis C et al. G protein-associated, specific membrane binding sites mediate the neuroprotective effect of dehydroepiandrosterone. FASEB J 2006; 20: 577.

    Article  CAS  PubMed  Google Scholar 

  13. Charalampopoulos I, Alexaki VI, Tsatsanis C, Minas V, Dermitzaki E, Lasaridis I et al. Neurosteroids as endogenous inhibitors of neuronal cell apoptosis in aging. Ann N Y Acad Sci 2006; 1088: 139–152.

    Article  CAS  PubMed  Google Scholar 

  14. Liu DM, Dillon JS . Dehydroepiandrosterone activates endothelial cell nitric-oxide synthase by a specific plasma membrane receptor coupled to G alpha(i2,3). J Biol Chem 2002; 277: 21379–21388.

    Article  CAS  PubMed  Google Scholar 

  15. Chen F, Knecht K, Birzin E, Fisher J, Wilkinson H, Mojena M et al. Direct agonist/antagonist functions of dehydroepiandrosterone. Endocrinology 2005; 146: 4568–4576.

    Article  CAS  PubMed  Google Scholar 

  16. Lazaridis I, Charalampopoulos I, Alexaki VI, Avlonitis N, Pediaditakis I, Efstathopoulos P et al. Neurosteroid dehydroepiandrosterone interacts with nerve growth factor (NGF) receptors, preventing neuronal apoptosis. Plos Biol 2011; 9: e1001051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pediaditakis I, Iliopoulos I, Theologidis I, Delivanoglou N, Margioris AN, Charalampopoulos I et al. Dehydroepiandrosterone: an ancestral ligand of neurotrophin receptors. Endocrinology 2015; 156: 16–23.

    Article  PubMed  Google Scholar 

  18. Starka L, Duskova M, Hill M . Dehydroepiandrosterone: a neuroactive steroid. J Steroid Biochem 2015; 145: 254–260.

    Article  CAS  Google Scholar 

  19. Kishimoto Y, Hoshi M . Dehydroepiandrosterone sulphate in rat brain: incorporation from blood and metabolism in vivo. J Neurochem 1972; 19: 2207–2215.

    Article  CAS  PubMed  Google Scholar 

  20. Maggio M, De Vita F, Fisichella A, Colizzi E, Provenzano S, Lauretani F et al. DHEA and cognitive function in the elderly. J Steroid Biochem Mol Biol 2015; 145: 281–292.

    Article  CAS  PubMed  Google Scholar 

  21. van Weerden WM, Bierings HG, van Steenbrugge GJ, de Jong FH, Schroder FH . Adrenal glands of mouse and rat do not synthesize androgens. Life Sci 1992; 50: 857–861.

    Article  CAS  PubMed  Google Scholar 

  22. Corpechot C, Robel P, Axelson M, Sjovall J, Baulieu EE . Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proc Natl Acad Sci USA 1981; 78: 4704–4707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Souza-Teodoro LH, de Oliveira C, Walters K, Carvalho LA . Higher serum dehydroepiandrosterone sulfate protects against the onset of depression in the elderly: findings from the English Longitudinal Study of Aging (ELSA). Psychoneuroendocrinology 2016; 64: 40–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhu G, Yin Y, Xiao CL, Mao RJ, Shi BH, Jie Y et al. Serum DHEAS levels are associated with the development of depression. Psychiat Res 2015; 229: 447–453.

    Article  Google Scholar 

  25. Hampl R, Bicikova M . Neuroimmunomodulatory steroids in Alzheimer dementia. J Steroid Biochem 2010; 119: 97–104.

    Article  CAS  Google Scholar 

  26. Aldred S, Mecocci P . Decreased dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) concentrations in plasma of Alzheimer's disease (AD) patients. Arch Gerontol Geriat 2010; 51: E16–E18.

    Article  CAS  Google Scholar 

  27. Wojtal K, Trojnar MK, Czuczwar SJ . Endogenous neuroprotective factors: neurosteroids. Pharmacol Rep 2006; 58: 335–340.

    CAS  PubMed  Google Scholar 

  28. Du CG, Khalil MW, Sriram S . Administration of dehydroepiandrosterone suppresses experimental allergic encephalomyelitis in SJL/J mice. J Immunol 2001; 167: 7094–7101.

    Article  CAS  PubMed  Google Scholar 

  29. Saijo K, Collier JG, Li AC, Katzenellenbogen JA, Glass CK . An ADIOL-ERbeta-CtBP transrepression pathway negatively regulates microglia-mediated inflammation. Cell 2011; 145: 584–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Litim N, Morissette M, Di Paolo T . Neuroactive gonadal drugs for neuroprotection in male and female models of Parkinson's disease. Neurosci Biobehav Rev 2015; 67: 79–88.

    Article  PubMed  Google Scholar 

  31. Belanger N, Gregoire L, Bedard P, Di Paolo T . Estradiol and dehydroepiandrosterone potentiate levodopa-induced locomotor activity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine monkeys. Endocrine 2003; 21: 97–101.

    Article  CAS  PubMed  Google Scholar 

  32. D'Astous M, Morissette M, Tanguay B, Callier S, Di Paolo T . Dehydroepiandrosterone (DHEA) such as 17 beta-estradiol prevents MPTP-induced dopamine depletion in mice. Synapse 2003; 47: 10–14.

    Article  CAS  PubMed  Google Scholar 

  33. Belanger N, Gregoire L, Bedard PJ, Di Paolo T . DHEA improves symptomatic treatment of moderately and severely impaired MPTP monkeys. Neurobiol Aging 2006; 27: 1684–1693.

    Article  CAS  PubMed  Google Scholar 

  34. Li H, Klein GM, Sun P, Buchan AM . Dehydroepiandrosterone (DHEA) reduces neuronal injury in a rat model of global cerebral ischemia. Brain Res 2001; 888: 263–266.

    Article  CAS  PubMed  Google Scholar 

  35. Charalampopoulos L, Tsatsanis C, Dermitzaki E, Alexaki VI, Castanas E, Margioris AN et al. Dehydroepiandrosterone and allopregnanolone protect sympathoadrenal medulla cells against apoptosis via antiapoptotic Bcl-2 proteins. Proc Natl Acad Sci USA 2004; 101: 8209–8214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gravanis A, Calogeropoulou T, Panoutsakopoulou V, Thermos K, Neophytou C, Charalampopoulos I . Neurosteroids and microneurotrophins signal through NGF receptors to induce prosurvival signaling in neuronal cells. Sci Signal 2012; 5: pt8.

    Article  PubMed  Google Scholar 

  37. Charalampopoulos I, Remboutsika E, Margioris AN, Gravanis A . Neurosteroids as modulators of neurogenesis and neuronal survival. Trends Endocrin Met 2008; 19: 300–307.

    Article  CAS  Google Scholar 

  38. Wang MJ, Huang HM, Chen HL, Jeng KCG . Dehydroepiandrosterone inhibits lipopolysaccharide-induced nitric oxide production in BV-2 microglia. Journal of Neurochemistry 2001; 77: 830–838.

    Article  CAS  PubMed  Google Scholar 

  39. Barger SW, Chavis JA, Drew PD . Dehydroepiandrosterone inhibits microglial nitric oxide production in a stimulus-specific manner. J Neurosci Res 2000; 62: 503–509.

    Article  CAS  PubMed  Google Scholar 

  40. Du CG, Guan QN, Khalil MW, Sriram S . Stimulation of Th2 response by high doses of dehydroepiandrosterone in KLH-primed splenocytes. Exp Biol Med 2001; 226: 1051–1060.

    Article  CAS  Google Scholar 

  41. Kipper-Galperin M, Galilly R, Danenberg HD, Brenner T . Dehydroepiandrosterone selectively inhibits production of tumor necrosis factor alpha and interleukin-6 [correction of interlukin-6] in astrocytes. Int J Dev Neurosci 1999; 17: 765–775.

    Article  CAS  PubMed  Google Scholar 

  42. Padgett DA, Loria RM . Endocrine regulation of murine macrophage function: effects of dehydroepiandrosterone, androstenediol, and androstenetriol. J Neuroimmunol 1998; 84: 61–68.

    Article  CAS  PubMed  Google Scholar 

  43. Straub RH, Konecna L, Hrach S, Rothe G, Kreutz M, Scholmerich J et al. Serum dehydroepiandrosterone (DHEA) and DHEA sulfate are negatively correlated with serum interleukin-6 (IL-6), and DHEA inhibits IL-6 secretion from mononuclear cells in man in vitro: possible link between endocrinosenescence and immunosenescence. J Clin Endocrinol Metab 1998; 83: 2012–2017.

    Article  CAS  PubMed  Google Scholar 

  44. Hoyk Z, Parducz A, Garcia-Segura LM . Dehydroepiandrosterone regulates astroglia reaction to denervation of olfactory glomeruli. Glia 2004; 48: 207–216.

    Article  PubMed  Google Scholar 

  45. Hazeldine J, Arlt W, Lord JM . Dehydroepiandrosterone as a regulator of immune cell function. J Steroid Biochem 2010; 120: 127–136.

    Article  CAS  Google Scholar 

  46. Prinz M, Priller J . Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 2014; 15: 300–312.

    Article  CAS  PubMed  Google Scholar 

  47. Crotti A, Ransohoff RM . Microglial physiology and pathophysiology: insights from genome-wide transcriptional profiling. Immunity 2016; 44: 505–515.

    Article  CAS  PubMed  Google Scholar 

  48. Madry C, Attwell D . Receptors, ion channels, and signaling mechanisms underlying microglial dynamics. J Biol Chem 2015; 290: 12443–12450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH . Mechanisms underlying inflammation in neurodegeneration. Cell 2010; 140: 918–934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Casano AM, Peri F . Microglia: multitasking specialists of the brain. Dev Cell 2015; 32: 469–477.

    Article  CAS  PubMed  Google Scholar 

  51. Saijo K, Glass CK . Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 2011; 11: 775–787.

    Article  CAS  PubMed  Google Scholar 

  52. Alexaki VI, Charalampopoulos I, Kampa M, Vassalou H, Theodoropoulos P, Stathopoulos EN et al. Estrogen exerts neuroprotective effects via membrane estrogen receptors and rapid Akt/NOS activation. Faseb J 2004; 18: 1594.

    Article  CAS  PubMed  Google Scholar 

  53. Chung KJ, Chatzigeorgiou A, Economopoulou M, Garcia-Martin R, Alexaki VI, Mitroulis I et al. A self-sustained loop of inflammation-driven inhibition of beige adipogenesis in obesity. Nat Immunol 2017; 18: 654–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ishii M, Wen H, Corsa CA, Liu T, Coelho AL, Allen RM et al. Epigenetic regulation of the alternatively activated macrophage phenotype. Blood 2009; 114: 3244–3254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G . The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 2007; 130: 1083–1094.

    Article  CAS  PubMed  Google Scholar 

  56. De Santa F, Narang V, Yap ZH, Tusi BK, Burgold T, Austenaa L et al. Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J 2009; 28: 3341–3352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kruidenier L, Chung CW, Cheng Z, Liddle J, Che K, Joberty G et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 2012; 488: 404–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Satoh T, Takeuchi O, Vandenbon A, Yasuda K, Tanaka Y, Kumagai Y et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 2010; 11: 936–944.

    Article  CAS  PubMed  Google Scholar 

  59. Yan Q, Sun L, Zhu Z, Wang L, Li S, Ye RD . Jmjd3-mediated epigenetic regulation of inflammatory cytokine gene expression in serum amyloid A-stimulated macrophages. Cell Signal 2014; 26: 1783–1791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tang Y, Li T, Li J, Yang J, Liu H, Zhang XJ et al. Jmjd3 is essential for the epigenetic modulation of microglia phenotypes in the immune pathogenesis of Parkinson's disease. Cell Death Differ 2014; 21: 369–380.

    Article  CAS  PubMed  Google Scholar 

  61. De Simone R, Ambrosini E, Carnevale D, Ajmone-Cat MA, Minghetti L . NGF promotes microglial migration through the activation of its high affinity receptor: modulation by TGF-beta. J Neuroimmunol 2007; 190: 53–60.

    Article  CAS  PubMed  Google Scholar 

  62. Zhu D, Yang N, Liu YY, Zheng J, Ji C, Zuo PP . M2 macrophage transplantation ameliorates cognitive dysfunction in amyloid-beta-treated rats through regulation of microglial polarization. J Alzheimers Dis 2016; 52: 483–495.

    Article  CAS  PubMed  Google Scholar 

  63. la Sala A, Corinti S, Federici M, Saragovi HU, Girolomoni G . Ligand activation of nerve growth factor receptor TrkA protects monocytes from apoptosis. J Leukoc Biol 2000; 68: 104–110.

    CAS  PubMed  Google Scholar 

  64. Ley S, Weigert A, Weichand B, Henke N, Mille-Baker B, Janssen RA et al. The role of TRKA signaling in IL-10 production by apoptotic tumor cell-activated macrophages. Oncogene 2013; 32: 631–640.

    Article  CAS  PubMed  Google Scholar 

  65. Chao MV . Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 2003; 4: 299–309.

    Article  CAS  PubMed  Google Scholar 

  66. Marlin MC, Li G . Biogenesis and function of the NGF/TrkA signaling endosome. Int Rev Cell Mol Biol 2015; 314: 239–257.

    Article  CAS  PubMed  Google Scholar 

  67. Franke TF . PI3K/Akt: getting it right matters. Oncogene 2008; 27: 6473–6488.

    Article  CAS  PubMed  Google Scholar 

  68. Yu H, Littlewood T, Bennett M . Akt isoforms in vascular disease. Vascul Pharmacol 2015; 71: 57–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rotllan N, Chamorro-Jorganes A, Araldi E, Wanschel AC, Aryal B, Aranda JF et al. Hematopoietic Akt2 deficiency attenuates the progression of atherosclerosis. Faseb J 2015; 29: 597–610.

    Article  CAS  PubMed  Google Scholar 

  70. Ding L, Biswas S, Morton RE, Smith JD, Hay N, Byzova TV et al. Akt3 deficiency in macrophages promotes foam cell formation and atherosclerosis in mice. Cell Metab 2012; 15: 861–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Androulidaki A, Iliopoulos D, Arranz A, Doxaki C, Schworer S, Zacharioudaki V et al. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity 2009; 31: 220–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Arranz A, Doxaki C, Vergadi E, Martinez de la Torre Y, Vaporidi K, Lagoudaki ED et al. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc Natl Acad Sci USA 2012; 109: 9517–9522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vergadi E, Vaporidi K, Theodorakis EE, Doxaki C, Lagoudaki E, Ieronymaki E et al. Akt2 deficiency protects from acute lung injury via alternative macrophage activation and miR-146a induction in mice. J Immunol 2014; 192: 394–406.

    Article  CAS  PubMed  Google Scholar 

  74. Riccio A, Ahn S, Davenport CM, Blendy JA, Ginty DD . Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 1999; 286: 2358–2361.

    Article  CAS  PubMed  Google Scholar 

  75. Riccio A, Pierchala BA, Ciarallo CL, Ginty DD . An NGF-TrkA-mediated retrograde signal to transcription factor CREB in sympathetic neurons. Science 1997; 277: 1097–1100.

    Article  CAS  PubMed  Google Scholar 

  76. Du K, Montminy M . CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 1998; 273: 32377–32379.

    Article  CAS  PubMed  Google Scholar 

  77. Wen AY, Sakamoto KM, Miller LS . The role of the transcription factor CREB in immune function. J Immunol 2010; 185: 6413–6419.

    Article  CAS  PubMed  Google Scholar 

  78. Prencipe G, Minnone G, Strippoli R, De Pasquale L, Petrini S, Caiello I et al. Nerve growth factor downregulates inflammatory response in human monocytes through TrkA. J Immunol 2014; 192: 3345–3354.

    Article  CAS  PubMed  Google Scholar 

  79. Wood ER, Kuyper L, Petrov KG, Hunter RN 3rd, Harris PA, Lackey K . Discovery and in vitro evaluation of potent TrkA kinase inhibitors: oxindole and aza-oxindoles. Bioorg Med Chem Lett 2004; 14: 953–957.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by grants from the Deutsche Forschungsgemeinschaft (AL1686/3-1 and AL1686/2-2 to VIA; CH279/6-2 and SFB655-project B10 to TC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V I Alexaki.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexaki, V., Fodelianaki, G., Neuwirth, A. et al. DHEA inhibits acute microglia-mediated inflammation through activation of the TrkA-Akt1/2-CREB-Jmjd3 pathway. Mol Psychiatry 23, 1410–1420 (2018). https://doi.org/10.1038/mp.2017.167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.167

This article is cited by

Search

Quick links