Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Osteoclast differentiation and activation

Abstract

Osteoclasts are specialized cells derived from the monocyte/macrophage haematopoietic lineage that develop and adhere to bone matrix, then secrete acid and lytic enzymes that degrade it in a specialized, extracellular compartment. Discovery of the RANK signalling pathway in the osteoclast has provided insight into the mechanisms of osteoclastogenesis and activation of bone resorption, and how hormonal signals impact bone structure and mass. Further study of this pathway is providing the molecular basis for developing therapeutics to treat osteoporosis and other diseases of bone loss.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Osteoclastogenesis.
Figure 2: Activation of bone resorption.
Figure 3: RANK signalling network in osteoclast.
Figure 4: Hormonal control of bone resorption.

References

  1. Chambers, T. J. Regulation of the differentiation and function of osteoclasts. J. Pathol. 192, 4–13 (2000).

    Article  CAS  Google Scholar 

  2. Teitlelbaum, S. L. Bone resorption by osteoclasts. Science 289, 1504–1508 (2000).

    Article  ADS  Google Scholar 

  3. Rodan, G. A. & Martin, T. J. Therapeutic approaches to bone diseases. Science 289, 1508–1514 (2000).

    Article  ADS  CAS  Google Scholar 

  4. Khosla, S. Minireview: the OPG/RANKL/RANK system. Endocrinology 142, 5050–5055 (2001).

    Article  CAS  Google Scholar 

  5. Takahashi, N. et al. Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures. Endocrinology 122, 1373–1382 (1988).

    Article  CAS  Google Scholar 

  6. Yasuda, H. et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl Acad. Sci. USA 95, 3597–3602 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Lacey, D. L. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176 (1998).

    Article  CAS  Google Scholar 

  8. Nakagawa, N. et al. RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem. Biophys. Res. Commun. 253, 395–400 (1998).

    Article  CAS  Google Scholar 

  9. Hsu, H. et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc. Natl Acad. Sci. USA 96, 3540–3545 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Burgess, T. L. et al. The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J. Cell Biol. 145, 527–538 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  11. Li, Y. P., Chen, W., Liang, Y., Li, E. & Stashenko, P. Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nature Genet. 23, 447–451 (1999).

    Article  CAS  Google Scholar 

  12. Fuller, K., Murphy, C., Kirstein, B., Fox, S.W. & Chambers, T. J. TNFα potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL. Endocrinology 143, 1108–1118 (2002).

    Article  CAS  Google Scholar 

  13. Rodan, G. A. Bone homeostasis. Proc. Natl Acad. Sci. USA 95, 13361–13362 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Jimi, E. et al. Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function. J. Immunol. 163, 434–442 (1999).

    CAS  Google Scholar 

  15. Lacey, D. L. et al. Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am. J. Pathol. 157, 435–448 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  16. Marks, S. C. Jr Osteoclast biology: lessons from mammalian mutations. Am. J. Med. Genet. 34, 43–53 (1989).

    Article  Google Scholar 

  17. McLean, W. & Olsen, B. R. Mouse models of abnormal skeletal development and homeostasis. Trends Genet. 17, S38–S43 (2001).

    Article  CAS  Google Scholar 

  18. Van Wesenbeeck, L. et al. The osteopetrotic mutation toothless (tl) is a loss-of-function frameshift mutation in the rat Csf1 gene: evidence of a crucial role for CSF-1 in osteoclastogenesis and endochondral ossification. Proc. Natl Acad. Sci. USA 99, 14303–14308 (2002).

    Article  ADS  CAS  Google Scholar 

  19. Takeshita, S. et al. SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nature Med. 9, 943–949 (2002).

    Article  Google Scholar 

  20. Bucay, N. et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 12, 1260–1268 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  21. Wagner, E. F. & Karsenty, G. Genetic control of skeletal development. Curr. Opin. Genet. Dev. 5, 527–532 (2001).

    Article  Google Scholar 

  22. Simonet, W. S. et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309–319 (1997).

    Article  CAS  Google Scholar 

  23. Yasuda, H. et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 139, 1329–1337 (1998).

    Article  Google Scholar 

  24. Morony, S. et al. A chimeric form of osteoprotegerin inhibits hypercalcemia and bone resorption induced by IL-1β, TNF-α, PTH, PTHrP, and 1,25(OH)2D3 . J. Bone Miner. Res. 14, 1478–1485 (1999).

    Article  CAS  Google Scholar 

  25. Wong, B. R. et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-jun N-terminal kinase in T cells. J. Biol. Chem. 272, 25190 (1997).

    Article  CAS  Google Scholar 

  26. Anderson, D. M. et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175–179 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Li, J. et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl Acad. Sci. USA 97, 1566–1571 (2000).

    Article  ADS  CAS  Google Scholar 

  28. Dougall, W. C. et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 13, 2412–2424 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  29. Kong, Y. Y. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315–323 (1999).

    Article  ADS  CAS  Google Scholar 

  30. Hofbauer, L. C. et al. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J. Bone Miner. Res. 15, 2–12 (2000).

    Article  CAS  Google Scholar 

  31. Theill, L. E., Boyle, W. J. & Penninger, J. M. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu. Rev. Immunol. 20, 795–823 (2002).

    Article  CAS  Google Scholar 

  32. Udagawa, N. et al. Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology 141, 3478–3484 (2000).

    Article  CAS  Google Scholar 

  33. Schoppet, M., Preissner, K. T. & Hofbauer, L. C. RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function. Arterioscler. Thromb. Vasc. Biol. 22, 549–553 (2002).

    Article  CAS  Google Scholar 

  34. Darnay, B. G., Haridas, V., Ni, J., Moore, P. A. & Aggarwal, B. B. Characterization of the intracellular domain of receptor activator of NF-κB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-κB and c-Jun N-terminal kinase. J. Biol. Chem. 273, 20551–20555 (1998).

    Article  CAS  Google Scholar 

  35. Galibert, L., Tometsko, M. E., Anderson, D. M., Cosman, D. & Dougall, W. C. The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-κB, a member of the TNFR superfamily. J. Biol. Chem. 273, 34120–34127 (1998).

    Article  CAS  Google Scholar 

  36. Lomaga, M. A. et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 13, 1015–1024 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  37. Kobayashi, N. et al. Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J. 20, 1271–1280 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  38. Armstrong, A. P. et al. A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function. J. Biol. Chem. 277, 44347–44356 (2002).

    Article  CAS  Google Scholar 

  39. Ye, H. et al. Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418, 443–447 (2002).

    Article  ADS  CAS  Google Scholar 

  40. Franzoso, G. et al. Requirement for NF-κB in osteoclast and B-cell development. Genes Dev. 11, 3482–3496 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  41. Xing, L. et al. NF-κB p50 and p52 expression is not required for RANK-expressing osteoclast progenitor formation but is essential for RANK- and cytokine-mediated osteoclastogenesis. J. Bone Miner. Res. 17, 1200–1210 (2002).

    Article  CAS  Google Scholar 

  42. Grigoriadis, A. E. et al. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266, 443–448 (1994).

    Article  ADS  CAS  Google Scholar 

  43. Karin, M., Cao, Y., Greten, F. R. & Li, Z.-W. NF-κB in cancer: from an innocent bystander to major culprit. Nature Rev. Cancer 2, 301–310 (2002).

    Article  CAS  Google Scholar 

  44. David, J. P., Sabapathy, K., Hoffmann, O., Idarraga, M. H. & Wagner, E. F. JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and -independent mechanisms. J. Cell Sci. 115, 4317–4325 (2002).

    Article  CAS  Google Scholar 

  45. Lee, S. W., Han, S. I., Kim, H. H. & Lee, Z. H. TAK1-dependent activation of AP-1 and c-Jun N-terminal kinase by receptor activator of NF-κB. J. Biochem. Mol. Biol. 35, 371–376 (2002).

    PubMed  Google Scholar 

  46. Mizukami, J. et al. Receptor activator of NF-κB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6. Mol. Cell. Biol. 22, 992–1000 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  47. Oda, H., Nakamura, K. & Tanaka, S. Possible involvement of IκB kinase 2 and MKK7 in osteoclastogenesis induced by receptor activator of nuclear factor κB ligand. J. Bone Miner. Res. 17, 612–621 (2002).

    Article  Google Scholar 

  48. Li, X. et al. p38 MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function. Endocrinology 143, 3105–3113 (2002).

    Article  CAS  Google Scholar 

  49. Matsumoto, M., Sudo, T., Saito, T., Osada, H. & Tsujimoto, M. Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-κB ligand (RANKL). J. Biol. Chem. 275, 31155–31161 (2000).

    Article  CAS  Google Scholar 

  50. Mansky, K. C., Sankar, U., Han, J. & Ostrowski, M. C. Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-κB ligand signaling. J. Biol. Chem. 277, 11077–11083 (2002).

    Article  CAS  Google Scholar 

  51. Wei, S., Wang, M. W., Teitelbaum, S. L. & Ross, F. P. Interleukin-4 reversibly inhibits osteoclastogenesis via inhibition of NF-κB and mitogen-activated protein kinase signaling. J. Biol. Chem. 277, 6622–6630 (2002).

    Article  CAS  Google Scholar 

  52. Hotokezaka, H. et al. U0126 and PD98059, specific inhibitors of MEK, accelerate differentiation of RAW264.7 cells into osteoclast-like cells. J. Biol. Chem. 277, 47366–47372 (2002).

    Article  CAS  Google Scholar 

  53. Wong, B. R. et al. TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol. Cell 4, 1041–1049 (1999).

    Article  CAS  Google Scholar 

  54. Shui, C., Riggs, B. L. & Khosla, S. The immunosuppressant rapamycin, alone or with transforming growth factor-β, enhances osteoclast differentiation of RAW264.7 monocyte-macrophage cells in the presence of RANK-ligand. Calcif. Tissue Int. 71, 437–446 (2002).

    Article  CAS  Google Scholar 

  55. Cappellen, D. et al. Transcriptional program of mouse osteoclast differentiation governed by the macrophage colony-stimulating factor and the ligand for the receptor activator of NFκB. J. Biol. Chem. 277, 21971–21982 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  56. Ishida, N. et al. Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator. J. Biol. Chem. 277, 41147–41156 (2002).

    Article  CAS  Google Scholar 

  57. Takayanagi, H. et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889–901 (2002).

    Article  CAS  Google Scholar 

  58. Battaglino, R. et al. c-myc is required for osteoclast differentiation. J. Bone Miner. Res. 17, 763–773 (2002).

    Article  CAS  Google Scholar 

  59. Mak, T. W. & Yeh, W. C. A block at the toll gate. Nature 418, 835–836 (2002).

    Article  ADS  CAS  Google Scholar 

  60. Arai, F. et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor κB (RANK) receptors. J. Exp. Med. 190, 1741–1754 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  61. Yan, T., Riggs, B. L., Boyle, W. J. & Khosla, S. Regulation of osteoclastogenesis and RANK expression by TGF-β1. J. Cell. Biochem. 83, 320–325 (2001).

    Article  CAS  Google Scholar 

  62. Ma, Y. L. et al. Catabolic effects of continuous human PTH (1–38) in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegerin and gene-associated bone formation. Endocrinology 142, 4047–4054 (2001).

    Article  CAS  Google Scholar 

  63. Takayanagi, H. et al. RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-β. Nature 416, 744–749 (2002).

    Article  ADS  CAS  Google Scholar 

  64. Hayashi, T., Kaneda, T., Toyama, Y., Kumegawa, M. & Hakeda, Y. Regulation of receptor activator of NF-κB ligand-induced osteoclastogenesis by endogenous interferon-β (INF-β) and suppressors of cytokine signaling (SOCS). The possible counteracting role of SOCSs in IFN-β-inhibited osteoclast formation. J. Biol. Chem. 277, 27880–27886 (2002).

    Article  CAS  Google Scholar 

  65. Takayanagi, H. et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature 408, 600–605 (2000).

    Article  ADS  CAS  Google Scholar 

  66. Kong, Y. Y. et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402, 304–309 (1999).

    Article  ADS  CAS  Google Scholar 

  67. Chagraoui, H. et al. Stimulation of osteoprotegerin production is responsible for osteosclerosis in mice overexpressing TPO. Blood (in the press).

  68. Hughes, A. E. et al. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nature Genet. 24, 45–48 (2000).

    Article  CAS  Google Scholar 

  69. Whyte, M. P. & Hughes, A. E. Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis. J. Bone Miner. Res. 17, 26–29 (2002).

    Article  CAS  Google Scholar 

  70. Whyte, M. P. et al. Osteoprotegerin deficiency and juvenile Paget's disease. N. Engl. J. Med. 347, 175–184 (2002).

    Article  CAS  Google Scholar 

  71. Cundy, T. et al. A mutation in the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotype. Hum. Mol. Genet. 11, 2119–2127 (2002).

    Article  CAS  Google Scholar 

  72. Langdahl, B. L., Carstens, M., Stenkjaer, L. & Eriksen, E. F. Polymorphisms in the osteoprotegerin gene are associated with osteoporotic fractures. J. Bone Miner. Res. 17, 1245–1255 (2002).

    Article  CAS  Google Scholar 

  73. Bekker, P. J. et al. The effect of a single dose of osteoprotegerin in postmenopausal women. J. Bone Miner. Res. 16, 348–360 (2001).

    Article  CAS  Google Scholar 

  74. Body, J. J. et al. A Phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer 97(Suppl.), 887–892 (2003).

    Article  Google Scholar 

  75. Eghbali-Fatourechi, G. et al. Role of RANK ligand in mediating the increased bone resorption in early postmenopausal women. J. Clin. Invest. 111, 1221–1230 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  76. Kim, Y. H., Kim, G. S. & Jeong-Hwa, B. Inhibitory action of bisphosphonates on bone resorption does not involve the regulation of RANKL and OPG expression. Exp. Mol. Med. 34, 145–151 (2002).

    Article  CAS  Google Scholar 

  77. Mizuno, A. et al. Transgenic mice overexpressing soluble osteoclast differentiation factor (sODF) exhibit severe osteoporosis. J. Bone Miner. Metab. 20, 337–344 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Boyle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyle, W., Simonet, W. & Lacey, D. Osteoclast differentiation and activation. Nature 423, 337–342 (2003). https://doi.org/10.1038/nature01658

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01658

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing