Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Unlocking the potential of the human genome with RNA interference

Abstract

The discovery of RNA interference (RNAi) may well be one of the transforming events in biology in the past decade. RNAi can result in gene silencing or even in the expulsion of sequences from the genome. Harnessed as an experimental tool, RNAi has revolutionized approaches to decoding gene function. It also has the potential to be exploited therapeutically, and clinical trials to test this possibility are already being planned.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNA silencing pathways in different organisms.
Figure 2: Genome-wide screens using RNAi.
Figure 3: Proposed scheme for the treatment of HIV patients using lentiviral vectors to transduce anti-HIV shRNA genes into the patient's haematopoietic stem cells.

Similar content being viewed by others

References

  1. Fire, A., Albertson, D., Harrison, S. W. & Moerman, D. G. Production of antisense RNA leads to effective and specific inhibition of gene expression in C. elegans muscle. Development 113, 503–514 (1991).

    CAS  PubMed  Google Scholar 

  2. Guo, S. & Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620 (1995).

    CAS  PubMed  Google Scholar 

  3. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    ADS  CAS  PubMed  Google Scholar 

  4. Hannon, G. J. RNA interference. Nature 418, 244–251 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Williams, B. R. Role of the double-stranded RNA-activated protein kinase (PKR) in cell regulation. Biochem. Soc. Trans. 25, 509–513 (1997).

    CAS  PubMed  Google Scholar 

  6. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    ADS  CAS  PubMed  Google Scholar 

  7. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150 (2001).

    CAS  PubMed  Google Scholar 

  8. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    ADS  CAS  PubMed  Google Scholar 

  9. Hutvágner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).

    PubMed  Google Scholar 

  10. Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34 (2001).

    CAS  PubMed  Google Scholar 

  11. Ketting, R. F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Paddison, P. J., Caudy, A. A., Sachidanandam, R. & Hannon, G. J. Short hairpin activated gene silencing in mammalian cells. Methods Mol. Biol. 265, 85–100 (2004).

    CAS  PubMed  Google Scholar 

  13. Khvorova, A., Reynolds, A. & Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    CAS  PubMed  Google Scholar 

  14. Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    CAS  PubMed  Google Scholar 

  15. Reynolds, A. et al. Rational siRNA design for RNA interference. Nature Biotechnol. 22, 326–330 (2004).

    CAS  Google Scholar 

  16. Silva, J. M., Sachidanandam, R. & Hannon, G. J. Free energy lights the path toward more effective RNAi. Nature Genet. 35, 303–305 (2003).

    CAS  PubMed  Google Scholar 

  17. Aza-Blanc, P. et al. Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol. Cell 12, 627–637 (2003).

    CAS  PubMed  Google Scholar 

  18. Pebernard, S. & Iggo, R. D. Determinants of interferon-stimulated gene induction by RNAi vectors. Differentiation 72, 103–111 (2004).

    CAS  PubMed  Google Scholar 

  19. Persengiev, S. P., Zhu, X. & Green, M. R. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 10, 12–18 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sledz, C. A., Holko, M., de Veer, M. J., Silverman, R. H. & Williams, B. R. Activation of the interferon system by short-interfering RNAs. Nature Cell Biol. 5, 834–839 (2003).

    CAS  PubMed  Google Scholar 

  21. Kim, D. H. et al. Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nature Biotechnol. 22, 321–325 (2004).

    CAS  Google Scholar 

  22. Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nature Biotechnol. 21, 635–637 (2003).

    CAS  Google Scholar 

  23. Doench, J. G. & Sharp, P. A. Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504–511 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lai, E. C., Tomancak, P., Williams, R. W. & Rubin, G. M. Computational identification of Drosophila microRNA genes. Genome Biol. 4, R42 (2003).

    PubMed  PubMed Central  Google Scholar 

  25. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    CAS  PubMed  Google Scholar 

  26. Enright, A. J. et al. MicroRNA targets in Drosophila. Genome Biol. 5, R1 (2003).

    PubMed  PubMed Central  Google Scholar 

  27. Scacheri, P. C. et al. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc. Natl Acad. Sci. USA 101, 1892–1897 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. McCaffrey, A. P. et al. RNA interference in adult mice. Nature 418, 38–39 (2002).

    ADS  CAS  PubMed  Google Scholar 

  29. Matsuda, T. & Cepko, C. L. Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc. Natl Acad. Sci. USA 101, 16–22 (2004).

    ADS  CAS  PubMed  Google Scholar 

  30. Layzer, J. M. et al. In vivo activity of nuclease-resistant siRNAs. RNA 10, 766–771 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lewis, D. L., Hagstrom, J. E., Loomis, A. G., Wolff, J. A. & Herweijer, H. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nature Genet. 32, 107–108 (2002).

    CAS  PubMed  Google Scholar 

  32. Sorensen, D. R., Leirdal, M. & Sioud, M. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J. Mol. Biol. 327, 761–766 (2003).

    CAS  PubMed  Google Scholar 

  33. Brummelkamp, T. R., Bernards, R. & Agami, R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2, 243–247 (2002).

    CAS  PubMed  Google Scholar 

  34. Rubinson, D. A. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genet. 33, 401–406 (2003).

    CAS  PubMed  Google Scholar 

  35. Hemann, M. T. et al. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nature Genet. 33, 396–400 (2003).

    CAS  PubMed  Google Scholar 

  36. Carmell, M. A., Zhang, L., Conklin, D. S., Hannon, G. J. & Rosenquist, T. A. Germline transmission of RNAi in mice. Nature Struct. Biol. 10, 91–92 (2003).

    CAS  PubMed  Google Scholar 

  37. Tiscornia, G., Singer, O., Ikawa, M. & Verma, I. M. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc. Natl Acad. Sci. USA 100, 1844–1848 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hasuwa, H., Kaseda, K., Einarsdottir, T. & Okabe, M. Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett. 532, 227–230 (2002).

    CAS  PubMed  Google Scholar 

  39. Kunath, T. et al. Transgenic RNA interference in ES cell-derived embryos recapitulates a genetic null phenotype. Nature Biotechnol. 21, 559–561 (2003).

    CAS  Google Scholar 

  40. Hsieh, A. C. et al. A library of siRNA duplexes targeting the phosphoinositide 3-kinase pathway: determinants of gene silencing for use in cell-based screens. Nucleic Acids Res. 32, 893–901 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Brummelkamp, T. R., Nijman, S. M., Dirac, A. M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797–801 (2003).

    ADS  CAS  PubMed  Google Scholar 

  42. Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004).

    ADS  CAS  PubMed  Google Scholar 

  43. Paddison, P. J. et al. A resource for large-scale RNA-interference-based screens in mammals. Nature 428, 427–431 (2004).

    ADS  CAS  PubMed  Google Scholar 

  44. Zheng, L. et al. An approach to genomewide screens of expressed small interfering RNAs in mammalian cells. Proc. Natl Acad. Sci. USA 101, 135–140 (2004).

    ADS  CAS  PubMed  Google Scholar 

  45. Luo, B., Heard, A. D. & Lodish, H. F. Small interfering RNA production by enzymatic engineering of DNA (SPEED). Proc. Natl Acad. Sci. USA 101, 5494–5499 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shirane, D. et al. Enzymatic production of RNAi libraries from cDNAs. Nature Genet. 36, 190–196 (2004).

    CAS  PubMed  Google Scholar 

  47. Sen, G., Wehrman, T. S., Myers, J. W. & Blau, H. M. Restriction enzyme-generated siRNA (REGS) vectors and libraries. Nature Genet. 36, 183–189 (2004).

    CAS  PubMed  Google Scholar 

  48. Silva, J. M., Mizuno, H., Brady, A., Lucito, R. & Hannon, G. J. RNA interference microarrays: high-throughput loss-of-function genetics in mammalian cells. Proc. Natl Acad. Sci. USA 101, 6548–6552 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ziauddin, J. & Sabatini, D. M. Microarrays of cells expressing defined cDNAs. Nature 411, 107–110 (2001).

    ADS  CAS  PubMed  Google Scholar 

  50. Jacque, J. M., Triques, K. & Stevenson, M. Modulation of HIV-1 replication by RNA interference. Nature 418, 435–438 (2002).

    ADS  CAS  PubMed  Google Scholar 

  51. Lee, N. S. et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nature Biotechnol. 20, 500–505 (2002).

    CAS  Google Scholar 

  52. Coburn, G. A. & Cullen, B. R. Potent and specific inhibition of human immunodeficiency virus type-1 replication by RNA interference. J. Virol. 76, 9225–9231 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Surabhi, R. M. & Gaynor, R. B. RNA interference directed against viral and cellular targets inhibits human immunodeficiency virus type-1 replication. J. Virol. 76, 12963–12973 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Novina, C. D. et al. siRNA-directed inhibition of HIV-1 infection. Nature Med. 8, 681–686 (2002).

    CAS  PubMed  Google Scholar 

  55. Park, W. S. et al. Prevention of HIV-1 infection in human peripheral blood mononuclear cells by specific RNA interference. Nucleic Acids Res. 30, 4830–4835 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Boden, D., Pusch, O., Lee, F., Tucker, L. & Ramratnam, B. Human immunodeficiency virus type-1 escape from RNA interference. J. Virol. 77, 11531–11535 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Martinez, M. A. et al. Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS 16, 2385–2390 (2002).

    CAS  PubMed  Google Scholar 

  58. Capodici, J., Kariko, K. & Weissman, D. Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. J. Immunol. 169, 5196–5201 (2002).

    PubMed  Google Scholar 

  59. Banerjea, A. et al. Inhibition of HIV-1 by lentiviral vector-transduced siRNAs in T lymphocytes differentiated in SCID-hu mice and CD34+ progenitor cell-derived macrophages. Mol. Ther. 8, 62–71 (2003).

    CAS  PubMed  Google Scholar 

  60. Li, M. J. et al. Inhibition of HIV-1 infection by lentiviral vectors expressing Pol III-promoted anti-HIV RNAs. Mol. Ther. 8, 196–206 (2003).

    CAS  PubMed  Google Scholar 

  61. Eugen-Olsen, J. et al. Heterozygosity for a deletion in the CKR-5 gene leads to prolonged AIDS-free survival and slower CD4 T-cell decline in a cohort of HIV-seropositive individuals. AIDS 11, 305–310 (1997).

    CAS  PubMed  Google Scholar 

  62. Samson, M. et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382, 722–725 (1996).

    ADS  CAS  PubMed  Google Scholar 

  63. Qin, X. F., An, D. S., Chen, I. S. & Baltimore, D. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc. Natl Acad. Sci. USA 100, 183–188 (2003).

    ADS  CAS  PubMed  Google Scholar 

  64. Dell'Agnola, C. et al. In vitro and in vivo hematopoietic potential of human stem cells residing in muscle tissue. Exp. Hematol. 30, 905–914 (2002).

    CAS  PubMed  Google Scholar 

  65. Dropulic, B. Lentivirus in the clinic. Mol. Ther. 4, 511–512 (2001).

    CAS  PubMed  Google Scholar 

  66. Davis, B. M., Humeau, L. & Dropulic, B. In vivo selection for human and murine hematopoietic cells transduced with a therapeutic MGMT lentiviral vector that inhibits HIV replication. Mol. Ther. 9, 160–172 (2004).

    CAS  PubMed  Google Scholar 

  67. Amado, R. G. et al. Anti-human immunodeficiency virus hematopoietic progenitor cell-delivered ribozyme in a phase I study: myeloid and lymphoid reconstitution in human immunodeficiency virus type-1-infected patients. Hum. Gene Ther. 15, 251–262 (2004).

    CAS  PubMed  Google Scholar 

  68. Michienzi, A. et al. RNA-mediated inhibition of HIV in a gene therapy setting. Ann. NY Acad. Sci. 1002, 63–71 (2003).

    ADS  CAS  PubMed  Google Scholar 

  69. McCaffrey, A. P. et al. Inhibition of hepatitis B virus in mice by RNA interference. Nature Biotechnol. 6, 639–644 (2003).

    Google Scholar 

  70. Blight, K. J., Kolykhalov, A. A. & Rice, C. M. Efficient initiation of HCV RNA replication in cell culture. Science 290, 1972–1974 (2000).

    ADS  CAS  PubMed  Google Scholar 

  71. Lohmann, V. et al. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113 (1999).

    CAS  PubMed  Google Scholar 

  72. Ikeda, M., Yi, M., Li, K. & Lemon, S. M. Selectable subgenomic and genome-length dicistronic RNAs derived from an infectious molecular clone of the HCV-N strain of hepatitis C virus replicate efficiently in cultured Huh7 cells. J. Virol. 76, 2997–3006 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Pietschmann, T., Lohmann, V., Rutter, G., Kurpanek, K. & Bartenschlager, R. Characterization of cell lines carrying self-replicating hepatitis C virus RNAs. J. Virol. 75, 1252–1264 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Randall, G., Grakoui, A. & Rice, C. M. Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proc. Natl Acad. Sci. USA 100, 235–240 (2003).

    ADS  CAS  PubMed  Google Scholar 

  75. Wilson, J. A. et al. RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proc. Natl Acad. Sci. USA 100, 2783–2788 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kapadia, S. B., Brideau-Andersen, A. & Chisari, F. V. Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc. Natl Acad. Sci. USA 100, 2014–2018 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Song, E. et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nature Med. 9, 347–351 (2003).

    CAS  PubMed  Google Scholar 

  78. Eastman, S. J. et al. Development of catheter-based procedures for transducing the isolated rabbit liver with plasmid DNA. Hum. Gene Ther. 13, 2065–2077 (2002).

    CAS  PubMed  Google Scholar 

  79. Kittler, R. & Buchholz, F. RNA interference: gene silencing in the fast lane. Semin. Cancer Biol. 13, 259–265 (2003).

    CAS  PubMed  Google Scholar 

  80. Wall, N. R. & Shi, Y. Small RNA: can RNA interference be exploited for therapy? Lancet 362, 1401–1403 (2003).

    CAS  PubMed  Google Scholar 

  81. Lu, P. Y., Xie, F. Y. & Woodle, M. C. siRNA-mediated antitumorigenesis for drug target validation and therapeutics. Curr. Opin. Mol. Ther. 5, 225–234 (2003).

    CAS  PubMed  Google Scholar 

  82. Buchele, T. Proapoptotic therapy with oblimersen (bcl-2 antisense oligonucleotide)—review of preclinical and clinical results. Onkologie 26, (Suppl. 7), 60–69 (2003).

    PubMed  Google Scholar 

  83. Chiu, Y. L. & Rana, T. M. siRNA function in RNAi: a chemical modification analysis. RNA 9, 1034–1048 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Czauderna, F. et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 31, 2705–2716 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang, L., Prakash, R. K., Stein, C. A., Koehn, R. K. & Ruffner, D. E. Progress in the delivery of therapeutic oligonucleotides: organ/cellular distribution and targeted delivery of oligonucleotides in vivo. Antisense Nucleic Acid Drug Dev. 13, 169–189 (2003).

    CAS  PubMed  Google Scholar 

  86. Holtz, M. S. & Bhatia, R. Effect of imatinib mesylate on chronic myelogenous leukemia hematopoietic progenitor cells. Leuk. Lymphoma 45, 237–245 (2004).

    CAS  PubMed  Google Scholar 

  87. Tauchi, T. & Ohyashiki, K. Molecular mechanisms of resistance of leukemia to imatinib mesylate. Leuk. Res. 28 (Suppl. 1), 39–45 (2004).

    Google Scholar 

  88. Cowan-Jacob, S. W. et al. Imatinib (STI571) resistance in chronic myelogenous leukemia: molecular basis of the underlying mechanisms and potential strategies for treatment. Mini Rev. Med. Chem. 4, 285–299 (2004).

    CAS  PubMed  Google Scholar 

  89. Marcucci, G., Perrotti, D. & Caligiuri, M. A. Understanding the molecular basis of imatinib mesylate therapy in chronic myelogenous leukemia and the related mechanisms of resistance. Commentary. Clin. Cancer Res., 9: 1333–1337, 2003. Clin. Cancer Res. 9, 1248–1252 (2003).

    Google Scholar 

  90. Li, M. J., McMahon, R., Snyder, D. S., Yee, J. K. & Rossi, J. J. Specific killing of Ph+ chronic myeloid leukemia cells by a lentiviral vector-delivered anti-bcr/abl small hairpin RNA. Oligonucleotides 13, 401–409 (2003).

    CAS  PubMed  Google Scholar 

  91. Wohlbold, L. et al. Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib mesylate (STI571). Blood 102, 2236–2239 (2003).

    CAS  PubMed  Google Scholar 

  92. Scherr, M. et al. Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood 101, 1566–1569 (2003).

    CAS  PubMed  Google Scholar 

  93. Miller, V. M., Gouvion, C. M., Davidson, B. L. & Paulson, H. L. Targeting Alzheimer's disease genes with RNA interference: an efficient strategy for silencing mutant alleles. Nucleic Acids Res. 32, 661–668 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Miller, V. M. et al. Allele-specific silencing of dominant disease genes. Proc. Natl Acad. Sci. USA 100, 7195–7200 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ding, H. et al. Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis. Aging Cell 2, 209–217 (2003).

    CAS  PubMed  Google Scholar 

  96. Davidson, B. L. & Paulson, H. L. Molecular medicine for the brain: silencing of disease genes with RNA interference. Lancet Neurol. 3, 145–149 (2004).

    CAS  PubMed  Google Scholar 

  97. Pasquinelli, A. E. MicroRNAs: deviants no longer. Trends Genet. 18, 171–173 (2002).

    CAS  PubMed  Google Scholar 

  98. Moss, E. G. MicroRNAs: hidden in the genome. Curr. Biol. 12, R138–R140 (2002).

    CAS  PubMed  Google Scholar 

  99. Hutvágner, G., Simard, M. J., Mello, C. C. & Zamore, P. D. Sequence-specific inhibition of small RNA function. PLoS Biol. 2, E98 (2004).

    PubMed  PubMed Central  Google Scholar 

  100. Saxena, S., Jonsson, Z. O. & Dutta, A. Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J. Biol. Chem. 278, 44312–44319 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the RNAi community for making this an exciting field of research. G.J.H. thanks F. Rivas for comments on the manuscript and J. Duffy for help with the figures. J.J.R. thanks L. Scherer for suggestions on therapeutic applications of RNAi. G.J.H. is supported by an Innovator award from the US Army Breast Cancer Research Program and by grants from the NIH. J.J.R. is supported by grants from the NIH, NIAID and NHBLI.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hannon, G., Rossi, J. Unlocking the potential of the human genome with RNA interference. Nature 431, 371–378 (2004). https://doi.org/10.1038/nature02870

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02870

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing