Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Aneuploidy and cancer

Abstract

In contrast to normal cells, aneuploidy — alterations in the number of chromosomes — is consistently observed in virtually all cancers. A growing body of evidence suggests that aneuploidy is often caused by a particular type of genetic instability, called chromosomal instability, which may reflect defects in mitotic segregation in cancer cells. A better understanding of the molecular mechanisms leading to aneuploidy holds promise for the development of cancer drugs that target this process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multicolour-fluorescence in situ hybridization of an aneuploid non-small cell lung cancer.
Figure 2: Multiple roads to aneuploidy.

Similar content being viewed by others

References

  1. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    ADS  CAS  PubMed  Google Scholar 

  2. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    CAS  PubMed  Google Scholar 

  3. Knudson, A. G. Two genetic hits (more or less) to cancer. Nature Rev. Cancer 1, 157–162 (2001).

    CAS  Google Scholar 

  4. Nowak, M. A. et al. The role of chromosomal instability in tumor initiation. Proc. Natl Acad. Sci. USA 99, 16226–16231 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hansemann, D. Ueber asymmetrische Zelltheilung in Epithelkrebsen und deren biologische Bedeutung. Virschows Arch. Pathol. Anat. 119, 299–326 (1890).

    Google Scholar 

  6. Boveri, T. Zur Frage der Enstehung maligner Tumoren (Gustav Fischer Verlag, Jena, 1914).

    Google Scholar 

  7. Duesberg, P. et al. How aneuploidy may cause cancer and genetic instability. Anticancer Res. 19, 4887–4906 (1999).

    CAS  PubMed  Google Scholar 

  8. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    ADS  CAS  PubMed  Google Scholar 

  9. Hansemann, D. Ueber patologische Mitosen. Arch. Pathol. Anat. Phys. Klin. Med. 119, 299–326 (1891).

    Google Scholar 

  10. Saunders, W. S. et al. Chromosomal instability and cytoskeletal defects in oral cancer cells. Proc. Natl Acad. Sci. USA 97, 303–308 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gisselsson, D. et al. Centrosomal abnormalities, multipolar mitoses, and chromosomal instability in head and neck tumours with dysfunctional telomeres. Br. J. Cancer 87, 202–207 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dutrillaux, B., Gerbault-Seureau, M., Remvikos, Y., Zafrani, B. & Prieur, M. Breast cancer genetic evolution: I. Data from cytogenetics and DNA content. Breast Cancer Res. Treat. 19, 245–255 (1991).

    CAS  PubMed  Google Scholar 

  13. Reid, B. J., Haggitt, R. C., Rubin, C. E. & Rabinovitch, P. S. Barrett's esophagus: correlation between flow cytometry and histology in detection of patients at risk for adenocarcinoma. Gastroenterology 93, 1–11 (1987).

    CAS  PubMed  Google Scholar 

  14. Levine, D. S. et al. Distribution of aneuploid cell populations in ulcerative colitis with dysplasia or cancer. Gastroenterology 101, 1198–1210 (1991).

    CAS  PubMed  Google Scholar 

  15. der-Sarkissian, H., Bacchetti, S., Cazes, L. & Londono-Vallejo, J. A. The shortest telomeres drive karyotype evolution in transformed cells. Oncogene 23, 1221–1228 (2004).

    CAS  PubMed  Google Scholar 

  16. Meraldi, P., Honda, R. & Nigg, E. A. Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53−/− cells. EMBO J. 21, 483–492 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lingle, W. L. et al. Centrosome amplification drives chromosomal instability in breast tumor development. Proc. Natl Acad. Sci. USA 99, 1978–1983 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pihan, G. A. et al. Centrosome defects and genetic instability in malignant tumors. Cancer Res. 58, 3974–3985 (1998).

    CAS  PubMed  Google Scholar 

  19. Lynch, H. T. & de la Chapelle, A. Hereditary colorectal cancer. N. Engl. J. Med. 348, 919–932 (2003).

    CAS  PubMed  Google Scholar 

  20. Marra, G. & Boland, C. R. Hereditary nonpolyposis colorectal cancer: the syndrome, the genes, and historical perspectives. J. Natl Cancer Inst. 87, 1114–1125 (1995).

    CAS  PubMed  Google Scholar 

  21. Peltomaki, P. Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum. Mol. Genet. 10, 735–740 (2001).

    CAS  PubMed  Google Scholar 

  22. Yamamoto, H., Imai, K. & Perucho, M. Gastrointestinal cancer of the microsatellite mutator phenotype pathway. J. Gastroenterol. 37, 153–163 (2002).

    CAS  PubMed  Google Scholar 

  23. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature 386, 623–627 (1997).

    ADS  CAS  PubMed  Google Scholar 

  24. Heim, S. & Mitelman, F. in Cancer Cytogenetics (eds Heim, S. & Mitelman, F.) 369–388 (Wiley-Liss, New York, 1995).

    Google Scholar 

  25. Cahill, D. P. et al. Mutations of mitotic checkpoint genes in human cancers. Nature 392, 300–303 (1998).

    ADS  CAS  PubMed  Google Scholar 

  26. Tighe, A., Johnson, V. L., Albertella, M. & Taylor, S. S. Aneuploid colon cancer cells have a robust spindle checkpoint. EMBO Rep. 2, 609–614 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoyt, M. A. A new view of the spindle checkpoint. J. Cell Biol. 154, 909–912 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fukagawa, T. Assembly of kinetochores in vertebrate cells. Exp. Cell Res. 296, 21–27 (2004).

    CAS  PubMed  Google Scholar 

  29. Cleveland, D. W., Mao, Y. & Sullivan, K. F. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112, 407–421 (2003).

    CAS  PubMed  Google Scholar 

  30. Rajagopalan, H., Nowak, M. A., Vogelstein, B. & Lengauer, C. The significance of unstable chromosomes in colorectal cancer. Nature Rev. Cancer 3, 695–701 (2003).

    CAS  Google Scholar 

  31. Bardelli, A. et al. Carcinogen-specific induction of genetic instability. Proc. Natl Acad. Sci. USA 98, 5770–5775 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dai, W. et al. Slippage of mitotic arrest and enhanced tumor development in mice with BubR1 haploinsufficiency. Cancer Res. 64, 440–445 (2004).

    CAS  PubMed  Google Scholar 

  33. Hanks, S. et al. Constitutional aneuploidy and cancer predisposition caused by biallelic BUB1B mutations. Nature Genet. advance online publication 10 October 2004 (doi:10.1038/ng1449).

  34. Li, Y., Gorbea, C., Mahaffey, D., Rechsteiner, M. & Benezra, R. MAD2 associates with the cyclosome/anaphase-promoting complex and inhibits its activity. Proc. Natl Acad. Sci. USA 94, 12431–12436 (1997).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Michel, L. S. et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409, 355–359 (2001).

    ADS  CAS  PubMed  Google Scholar 

  36. Hernando, E. et al. Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 430, 797–802 (2004).

    ADS  CAS  PubMed  Google Scholar 

  37. Wang, Z. et al. Three classes of genes mutated in colorectal cancers with chromosomal instability. Cancer Res. 64, 2998–3001 (2004).

    CAS  PubMed  Google Scholar 

  38. Zhou, H. et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nature Genet. 20, 189–193 (1998).

    CAS  PubMed  Google Scholar 

  39. Strohmaier, H. et al. Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 413, 316–322 (2001).

    ADS  CAS  PubMed  Google Scholar 

  40. Rajagopalan, H. et al. Inactivation of hCDC4 can cause chromosomal instability. Nature 428, 77–81 (2004).

    ADS  CAS  PubMed  Google Scholar 

  41. Weaver, Z. et al. Mammary tumors in mice conditionally mutant for Brca1 exhibit gross genomic instability and centrosome amplification yet display a recurring distribution of genomic imbalances that is similar to human breast cancer. Oncogene 21, 5097–5107 (2002).

    CAS  PubMed  Google Scholar 

  42. Tutt, A. et al. Absence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification. Curr. Biol. 9, 1107–1110 (1999).

    CAS  PubMed  Google Scholar 

  43. Spencer, F., Gerring, S. L., Connelly, C. & Hieter, P. Mitotic chromosome transmission fidelity mutants in Saccharomyces cerevisiae. Genetics 124, 237–249 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hieter, P., Mann, C., Snyder, M. & Davis, R. W. Mitotic stability of yeast chromosomes: a colony color assay that measures nondisjunction and chromosome loss. Cell 40, 381–392 (1985).

    CAS  PubMed  Google Scholar 

  45. Zhou, W. et al. Counting alleles to predict recurrence of early-stage colorectal cancers. Lancet 359, 219–225 (2002).

    PubMed  Google Scholar 

  46. Watanabe, T. et al. Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 344, 1196–1206 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Risques, R. A. et al. Genetic pathways and genome-wide determinants of clinical outcome in colorectal cancer. Cancer Res. 63, 7206–7214 (2003).

    CAS  PubMed  Google Scholar 

  48. Sawyers, C. L. Research on resistance to cancer drug Gleevec. Science 294, 1834 (2001).

    CAS  PubMed  Google Scholar 

  49. Wang, T. L. et al. Digital karyotyping identifies thymidylate synthase amplification as a mechanism of resistance to 5-fluorouracil in metastatic colorectal cancer patients. Proc. Natl. Acad. Sci. USA 101, 3089–3094 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kops, G. J., Foltz, D. R. & Cleveland, D. W. Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc. Natl. Acad. Sci. USA 101, 8699–8704 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of our laboratory for critical reading of this manuscript. We also thank D. Gisselsson and M. Höglund for sharing some of their unpublished thoughts on mitotic disturbances, and M. R. Speicher for providing the photograph for Fig. 1. We especially thank S. Kern and D. A. Dezentje for permission to report unpublished data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Lengauer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajagopalan, H., Lengauer, C. Aneuploidy and cancer. Nature 432, 338–341 (2004). https://doi.org/10.1038/nature03099

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03099

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing