Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism of DNA translocation in a replicative hexameric helicase

Abstract

The E1 protein of papillomavirus is a hexameric ring helicase belonging to the AAA + family. The mechanism that couples the ATP cycle to DNA translocation has been unclear. Here we present the crystal structure of the E1 hexamer with single-stranded DNA discretely bound within the hexamer channel and nucleotides at the subunit interfaces. This structure demonstrates that only one strand of DNA passes through the hexamer channel and that the DNA-binding hairpins of each subunit form a spiral ‘staircase’ that sequentially tracks the oligonucleotide backbone. Consecutively grouped ATP, ADP and apo configurations correlate with the height of the hairpin, suggesting a straightforward DNA translocation mechanism. Each subunit sequentially progresses through ATP, ADP and apo states while the associated DNA-binding hairpin travels from the top staircase position to the bottom, escorting one nucleotide of single-stranded DNA through the channel. These events permute sequentially around the ring from one subunit to the next.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the E1 hexameric helicase in complex with ssDNA and ADP.
Figure 2: DNA binding in the E1 hexameric helicase.
Figure 3: Intersubunit interactions and nucleotide binding.
Figure 4: Cartoon depiction of a coordinated escort mechanism for the E1 hexameric helicase.

Similar content being viewed by others

References

  1. Messer, W. The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. FEMS Microbiol. Rev. 26, 355–374 (2002)

    CAS  PubMed  Google Scholar 

  2. Bell, S. P. & Dutta, A. DNA replication in eukaryotic cells. Annu. Rev. Biochem. 71, 333–374 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. Hickman, A. B. & Dyda, F. Binding and unwinding: SF3 viral helicases. Curr. Opin. Struct. Biol. 15, 77–85 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. AAA + : A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999)

    CAS  PubMed  Google Scholar 

  5. Seo, Y. S., Muller, F., Lusky, M. & Hurwitz, J. Bovine papillomavirus (BPV) encoded E1 protein contains multiple activities required for BPV DNA replication. Proc. Natl Acad. Sci. USA 90, 702–706 (1993)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang, L. et al. The E1 protein of the papillomavirus BPV-1 is an ATP dependent DNA helicase. Proc. Natl Acad. Sci. USA 90, 5086–5090 (1993)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sedman, J. & Stenlund, A. The papillomavirus E1 protein forms a DNA-dependent hexameric complex with ATPase and DNA helicase activities. J. Virol. 72, 6893–6897 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ahnert, P. & Patel, S. S. Asymmetric interactions of hexameric bacteriophage T7 DNA helicase with the 5′- and 3′-tails of the forked DNA substrate. J. Biol. Chem. 272, 32267–32273 (1997)

    Article  CAS  PubMed  Google Scholar 

  9. LeBowitz, J. H. & McMacken, R. The Escherichia coli dnaB replication protein is a DNA helicase. J. Biol. Chem. 261, 4738–4748 (1986)

    CAS  PubMed  Google Scholar 

  10. Egelman, E. H., Yu, X., Wild, R., Hingorani, M. M. & Patel, S. S. Bacteriophage T7 helicase/primase proteins form rings around single-stranded DNA that suggest a general structure for hexameric helicases. Proc. Natl Acad. Sci. USA 92, 3869–3873 (1995)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaplan, D. L. & O'Donnell, M. DnaB drives DNA branch migration and dislodges proteins while encircling two DNA strands. Mol. Cell 10, 647–657 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. Seo, Y. S. & Hurwitz, J. Isolation of helicase alpha, a DNA helicase from HeLa cells stimulated by a fork structure and signal-stranded DNA-binding proteins. J. Biol. Chem. 268, 10282–10295 (1993)

    CAS  PubMed  Google Scholar 

  13. Gai, D., Zhao, R., Li, D., Finkielstein, C. V. & Chen, X. S. Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen. Cell 119, 47–60 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. Li, D. et al. Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen. Nature 423, 512–518 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Enemark, E. J., Chen, G., Vaughn, D. E., Stenlund, A. & Joshua-Tor, L. Crystal structure of the DNA binding domain of the replication initiation protein E1 from papillomavirus. Mol. Cell 6, 149–158 (2000)

    Article  CAS  PubMed  Google Scholar 

  16. Luo, X., Sanford, D. G., Bullock, P. A. & Bachovchin, W. W. Solution structure of the origin DNA-binding domain of SV40 T-antigen. Nature Struct. Biol. 3, 1034–1039 (1996)

    Article  CAS  PubMed  Google Scholar 

  17. Davey, M. J. & O'Donnell, M. Replicative helicase loaders: ring breakers and ring makers. Curr. Biol. 13, R594–R596 (2003)

    Article  CAS  PubMed  Google Scholar 

  18. Jeruzalmi, D., O'Donnell, M. & Kuriyan, J. Clamp loaders and sliding clamps. Curr. Opin. Struct. Biol. 12, 217–224 (2002)

    Article  CAS  PubMed  Google Scholar 

  19. Enemark, E. J., Stenlund, A. & Joshua-Tor, L. Crystal structures of two intermediates in the assembly of the papillomavirus replication initiation complex. EMBO J. 21, 1487–1496 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gillette, T. G., Lusky, M. & Borowiec, J. A. Induction of structural changes in the bovine papillomavirus type 1 origin of replication by the viral E1 and E2 proteins. Proc. Natl Acad. Sci. USA 91, 8846–8850 (1994)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sanders, C. M. & Stenlund, A. Recruitment and loading of the E1 initiator protein: an ATP-dependent process catalysed by a transcription factor. EMBO J. 17, 7044–7055 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schuck, S. & Stenlund, A. Assembly of a double hexameric helicase. Mol. Cell 20, 377–389 (2005)

    Article  CAS  PubMed  Google Scholar 

  23. Chen, G. & Stenlund, A. Sequential and ordered assembly of E1 initiator complexes on the papillomavirus origin of DNA replication generates progressive structural changes related to melting. Mol. Cell. Biol. 22, 7712–7720 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abbate, E. A., Berger, J. M. & Botchan, M. R. The X-ray structure of the papillomavirus helicase in complex with its molecular matchmaker E2. Genes Dev. 18, 1981–1996 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Singleton, M. R., Sawaya, M. R., Ellenberger, T. & Wigley, D. B. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101, 589–600 (2000)

    Article  CAS  PubMed  Google Scholar 

  26. Crampton, D. J., Mukherjee, S. & Richardson, C. C. DNA-induced switch from independent to sequential dTTP hydrolysis in the bacteriophage T7 DNA helicase. Mol. Cell 21, 165–174 (2006)

    Article  CAS  PubMed  Google Scholar 

  27. Hingorani, M. M. & Patel, S. S. Interactions of bacteriophage T7 primase/helicase protein with single-stranded and double-stranded DNAs. Biochemistry 32, 12478–12487 (1993)

    Article  CAS  PubMed  Google Scholar 

  28. Liao, J. C., Jeong, Y. J., Kim, D. E., Patel, S. S. & Oster, G. Mechanochemistry of t7 DNA helicase. J. Mol. Biol. 350, 452–475 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. Fouts, E. T., Yu, X., Egelman, E. H. & Botchan, M. R. Biochemical and electron microscopic image analysis of the hexameric E1 helicase. J. Biol. Chem. 274, 4447–4458 (1999)

    Article  CAS  PubMed  Google Scholar 

  30. Kawaoka, J., Jankowsky, E. & Pyle, A. M. Backbone tracking by the SF2 helicase NPH-II. Nature Struct. Mol. Biol. 11, 526–530 (2004)

    Article  CAS  Google Scholar 

  31. Wessel, R., Schweizer, J. & Stahl, H. Simian virus 40 T-antigen DNA helicase is a hexamer which forms a binary complex during bidirectional unwinding from the viral origin of DNA replication. J. Virol. 66, 804–815 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin, B. Y., Makhov, A. M., Griffith, J. D., Broker, T. R. & Chow, L. T. Chaperone proteins abrogate inhibition of the human papillomavirus (HPV) E1 replicative helicase by the HPV E2 protein. Mol. Cell. Biol. 22, 6592–6604 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McCoy, A. J., Grosse-Kunstleve, R. W., Storoni, L. C. & Read, R. J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D 61, 458–464 (2005)

    Article  PubMed  Google Scholar 

  34. Esnouf, R. M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. 15, 132–134 (1997)

    Article  CAS  Google Scholar 

  35. Bacon, D. J. & Anderson, W. F. A fast algorithm for rendering space-filling molecule pictures. J. Mol. Graph. 6, 219–220 (1988)

    Article  Google Scholar 

  36. Merritt, E. A. & Murphy, M. E. P. Raster3D version 2.0 - A program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Robinson (beamline X29) and A. Héroux (beamline X26C) for support with data collection at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. We also thank G. Hannon and A. Gann for critical reading of the manuscript, and B. Stillman, N. Tolia and members of the Joshua-Tor laboratory for discussions. The NSLS is supported by the US Department of Energy, Division of Materials Sciences and Division of Chemical Sciences. This work was supported by an NIH grant to L.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leemor Joshua-Tor.

Ethics declarations

Competing interests

Coordinates and structure factors are deposited in the Protein Data Bank under accession code 2GXA. Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Methods with 15 references, and Supplementary Figures S1–S7 and Supplementary Tables S1 and S2. (PDF 18051 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enemark, E., Joshua-Tor, L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 442, 270–275 (2006). https://doi.org/10.1038/nature04943

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04943

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing