Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix

Abstract

Maintenance methylation of hemimethylated CpG dinucleotides at DNA replication forks is the key to faithful mitotic inheritance of genomic methylation patterns. UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is required for maintenance methylation by interacting with DNA nucleotide methyltransferase 1 (DNMT1), the maintenance methyltransferase, and with hemimethylated CpG, the substrate for DNMT1 (refs 1 and 2). Here we present the crystal structure of the SET and RING-associated (SRA) domain of mouse UHRF1 in complex with DNA containing a hemimethylated CpG site. The DNA is contacted in both the major and minor grooves by two loops that penetrate into the middle of the DNA helix. The 5-methylcytosine has flipped completely out of the DNA helix and is positioned in a binding pocket with planar stacking contacts, Watson–Crick polar hydrogen bonds and van der Waals interactions specific for 5-methylcytosine. Hence, UHRF1 contains a previously unknown DNA-binding module and is the first example of a non-enzymatic, sequence-specific DNA-binding protein domain to use the base flipping mechanism to interact with DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of SRA–DNA complex.
Figure 2: Details of SRA–DNA interactions.
Figure 3: Structure of the SRA–DNA specific ( P 2 1 2 1 2 1 ) and non-specific ( P 6 1 22) complexes.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The X-ray structures (coordinates and structure factor files) of mouse UHRF1 SRA with bound DNA have been submitted to PDB under accession numbers 2ZO0 (P212121), 2ZO1 (P41212) and 2ZO2 (P6122), respectively.

References

  1. Bostick, M. et al. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317, 1760–1764 (2007)

    Article  ADS  CAS  Google Scholar 

  2. Sharif, J. et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450, 908–912 (2007)

    Article  ADS  CAS  Google Scholar 

  3. Cheng, X. & Blumenthal, R. M. Mammalian DNA methyltransferases: a structural perspective. Structure 16, 341–350 (2008)

    Article  Google Scholar 

  4. Goll, M. G. & Bestor, T. H. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 74, 481–514 (2005)

    Article  CAS  Google Scholar 

  5. Chen, T. & Li, E. Establishment and maintenance of DNA methylation patterns in mammals. Curr. Top. Microbiol. Immunol. 301, 179–201 (2006)

    CAS  PubMed  Google Scholar 

  6. Mortusewicz, O., Schermelleh, L., Walter, J., Cardoso, M. C. & Leonhardt, H. Recruitment of DNA methyltransferase I to DNA repair sites. Proc. Natl Acad. Sci. USA 102, 8905–8909 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Jeltsch, A. Molecular enzymology of mammalian DNA methyltransferases. Curr. Top. Microbiol. Immunol. 301, 203–225 (2006)

    CAS  PubMed  Google Scholar 

  8. Unoki, M., Bronner, C. & Mousli, M. A concern regarding the current confusion with the human homolog of mouse Np95, ICBP90/UHRF1. Radiat. Res. 169, 240–244 (2008)

    Article  ADS  CAS  Google Scholar 

  9. Achour, M. et al. The interaction of the SRA domain of ICBP90 with a novel domain of DNMT1 is involved in the regulation of VEGF gene expression. Oncogene 27, 2187–2197 (2008)

    Article  CAS  Google Scholar 

  10. Ooi, S. K. & Bestor, T. H. Cytosine methylation: remaining faithful. Curr. Biol. 18, R174–R176 (2008)

    Article  CAS  Google Scholar 

  11. Arita, K., Ariyoshi, M., Tochio, H., Nakamura, Y. & Shirakawa, M. Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature 10.1038/nature07249 (this issue).

  12. Horton, J. R., Liebert, K., Bekes, M., Jeltsch, A. & Cheng, X. Structure and substrate recognition of the Escherichia coli DNA adenine methyltransferase. J. Mol. Biol. 358, 559–570 (2006)

    Article  CAS  Google Scholar 

  13. Horton, J. R., Liebert, K., Hattman, S., Jeltsch, A. & Cheng, X. Transition from nonspecific to specific DNA interactions along the substrate-recognition pathway of dam methyltransferase. Cell 121, 349–361 (2005)

    Article  CAS  Google Scholar 

  14. Yang, Z. et al. Structure of the bacteriophage T4 DNA adenine methyltransferase. Nature Struct. Biol. 10, 849–855 (2003)

    Article  CAS  Google Scholar 

  15. Klimasauskas, S. & Roberts, R. J. M. HhaI binds tightly to substrates containing mismatches at the target base. Nucleic Acids Res. 23, 1388–1395 (1995)

    Article  CAS  Google Scholar 

  16. Woo, H. R., Pontes, O., Pikaard, C. S. & Richards, E. J. VIM1, a methylcytosine-binding protein required for centromeric heterochromatinization. Genes Dev. 21, 267–277 (2007)

    Article  CAS  Google Scholar 

  17. Johnson, L. M. et al. The SRA methyl-cytosine-binding domain links DNA and histone methylation. Curr. Biol. 17, 379–384 (2007)

    Article  CAS  Google Scholar 

  18. Malagnac, F., Bartee, L. & Bender, J. An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. EMBO J. 21, 6842–6852 (2002)

    Article  CAS  Google Scholar 

  19. Klimasauskas, S., Kumar, S., Roberts, R. J. & Cheng, X. HhaI methyltransferase flips its target base out of the DNA helix. Cell 76, 357–369 (1994)

    Article  CAS  Google Scholar 

  20. Cheng, X. & Roberts, R. J. AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Res. 29, 3784–3795 (2001)

    Article  CAS  Google Scholar 

  21. Yang, C. G. et al. Crystal structures of DNA/RNA repair enzymes AlkB and ABH2 bound to dsDNA. Nature 452, 961–965 (2008)

    Article  ADS  CAS  Google Scholar 

  22. Min, J. H. & Pavletich, N. P. Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature 449, 570–575 (2007)

    Article  ADS  CAS  Google Scholar 

  23. Parker, J. B. et al. Enzymatic capture of an extrahelical thymine in the search for uracil in DNA. Nature 449, 433–437 (2007)

    Article  ADS  CAS  Google Scholar 

  24. Lee, T. T., Agarwalla, S. & Stroud, R. M. A unique RNA fold in the RumA–RNA–cofactor ternary complex contributes to substrate selectivity and enzymatic function. Cell 120, 599–611 (2005)

    Article  CAS  Google Scholar 

  25. Werner, R. M. et al. Stressing-out DNA? The contribution of serine–phosphodiester interactions in catalysis by uracil DNA glycosylase. Biochemistry 39, 12585–12594 (2000)

    Article  CAS  Google Scholar 

  26. Cheng, X. & Blumenthal, R. M. Finding a basis for flipping bases. Structure 4, 639–645 (1996)

    Article  CAS  Google Scholar 

  27. Ohki, I. et al. Solution structure of the methyl-CpG binding domain of human MBD1 in complex with methylated DNA. Cell 105, 487–497 (2001)

    Article  CAS  Google Scholar 

  28. Ho, K. L. et al. MeCP2 binding to DNA depends upon hydration at methyl-CpG. Mol. Cell 29, 525–531 (2008)

    Article  CAS  Google Scholar 

  29. Mousli, M. et al. ICBP90 belongs to a new family of proteins with an expression that is deregulated in cancer cells. Br. J. Cancer 89, 120–127 (2003)

    Article  CAS  Google Scholar 

  30. Muto, M. et al. Targeted disruption of Np95 gene renders murine embryonic stem cells hypersensitive to DNA damaging agents and DNA replication blocks. J. Biol. Chem. 277, 34549–34555 (2002)

    Article  CAS  Google Scholar 

  31. Lan, F. et al. Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression. Nature 448, 718–722 (2007)

    Article  ADS  CAS  Google Scholar 

  32. Studier, F. W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005)

    Article  CAS  Google Scholar 

  33. Malakhov, M. P. et al. SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J. Struct. Funct. Genomics 5, 75–86 (2004)

    Article  CAS  Google Scholar 

  34. Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. Multiparametric scaling of diffraction intensities. Acta Crystallogr. A 59, 228–234 (2003)

    Article  Google Scholar 

  35. Storoni, L. C., McCoy, A. J. & Read, R. J. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D 60, 432–438 (2004)

    Article  Google Scholar 

  36. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  37. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. M. Blumenthal for critical comments. The Emory University School of Medicine supported the use of SER-CAT beamlines. This work was supported by grant GM049245 to X.C. from the National Institutes of Health (NIH). Work in the Jacobsen laboratory is funded by the NIH grant GM060398. M.B. is funded by NIH-NSRA Fellowship number CA1263022. S.E.J. is an Investigator of the Howard Hughes Medical Institute and X.C. is a Georgia Research Alliance Eminent Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Cheng.

Supplementary information

Supplementary Information

The file contains Supplementary Figures S1-S7 with legends and references and Supplementary Table T1. (PDF 1159 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, H., Horton, J., Zhang, X. et al. The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature 455, 826–829 (2008). https://doi.org/10.1038/nature07280

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07280

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing