Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The DNA-damage response in human biology and disease

Abstract

The prime objective for every life form is to deliver its genetic material, intact and unchanged, to the next generation. This must be achieved despite constant assaults by endogenous and environmental agents on the DNA. To counter this threat, life has evolved several systems to detect DNA damage, signal its presence and mediate its repair. Such responses, which have an impact on a wide range of cellular events, are biologically significant because they prevent diverse human diseases. Our improving understanding of DNA-damage responses is providing new avenues for disease management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model for the DDR.
Figure 2: Exploitation of DDR pathways to enhance therapeutic responses.

Similar content being viewed by others

References

  1. Lindahl, T. & Barnes, D. E. Repair of endogenous DNA damage. Cold Spring Harb. Symp. Quant. Biol. 65, 127–134 (2000)An excellent overview of the extent of endogenous DNA damage, the types of DNA lesions arising from cell autonomous sources, and the pathways that repair such lesions.

    Article  CAS  PubMed  Google Scholar 

  2. Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M. & Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160, 1–40 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. Kawanishi, S., Hiraku, Y., Pinlaor, S. & Ma, N. Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis. Biol. Chem. 387, 365–372 (2006)

    Article  CAS  PubMed  Google Scholar 

  4. Khanna, K. K. & Jackson, S. P. DNA double-strand breaks: signalling, repair and the cancer connection. Nature Genet. 27, 247–254 (2001)

    Article  CAS  PubMed  Google Scholar 

  5. Ward, J. F. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog. Nucleic Acid Res. Mol. Biol. 35, 95–125 (1988)

    Article  CAS  PubMed  Google Scholar 

  6. Doll, R. & Peto, R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J. Natl Cancer Inst. 66, 1191–1308 (1981)Classical overview of epidemiological evidence for DNA-damaging environmental insults implicated as carcinogens, and suggestions for measures to prevent such tumours.

    Article  CAS  PubMed  Google Scholar 

  7. Wogan, G. N., Hecht, S. S., Felton, J. S., Conney, A. H. & Loeb, L. A. Environmental and chemical carcinogenesis. Semin. Cancer Biol. 14, 473–486 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. Espinosa, E., Zamora, P., Feliu, J. & Gonzalez Baron, M. Classification of anticancer drugs—a new system based on therapeutic targets. Cancer Treat. Rev. 29, 515–523 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. Lebwohl, M., Ting, P. T. & Koo, J. Y. Psoriasis treatment: traditional therapy. Ann. Rheum. Dis. 64 (suppl. 2). 83–86 (2005)

    Article  CAS  Google Scholar 

  10. Harper, J. W. & Elledge, S. J. The DNA damage response: ten years after. Mol. Cell 28, 739–745 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. Rouse, J. & Jackson, S. P. Interfaces between the detection, signalling, and repair of DNA damage. Science 297, 547–551 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Harrison, J. C. & Haber, J. E. Surviving the Breakup: The DNA damage checkpoint. Annu. Rev. Genet. 40, 209–235 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. Jiricny, J. The multifaceted mismatch-repair system. Nature Rev. Mol. Cell Biol. 7, 335–346 (2006)

    Article  CAS  Google Scholar 

  14. David, S. S., O’Shea, V. L. & Kundu, S. Base-excision repair of oxidative DNA damage. Nature 447, 941–950 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoeijmakers, J. H. J. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001)A highly informative review of the links between DNA damage, DNA-repair pathways and their defects contributing to tumorigenesis.

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Friedberg, E. C. et al. DNA Repair and Mutagenesis 2nd edn (ASM Press, 2006)An excellent, comprehensive multi-author book covering essentially the entire field of DNA repair, from basic mechanisms in diverse organisms, to human diseases associated with defective DNA repair.

    Google Scholar 

  17. Loeb, L. A. & Monnat, R. J. DNA polymerases and human disease. Nature Rev. Genet. 9, 594–604 (2008)

    Article  CAS  PubMed  Google Scholar 

  18. Lieber, M. R. The mechanism of human nonhomologous DNA end joining. J. Biol. Chem. 283, 1–5 (2008)

    Article  CAS  PubMed  Google Scholar 

  19. San Filippo, J., Sung, P. & Klein, H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 77, 229–257 (2008)

    Article  CAS  PubMed  Google Scholar 

  20. McVey, M. & Lee, S. E. MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet. 24, 529–538 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kennedy, R. D. & D’Andrea, A. D. The Fanconi Anemia/BRCA pathway: new faces in the crowd. Genes Dev. 19, 2925–2940 (2005)

    Article  CAS  PubMed  Google Scholar 

  22. Cimprich, K. A. & Cortez, D. ATR: an essential regulator of genome integrity. Nature Rev. Mol. Cell Biol. 9, 616–627 (2008)

    Article  CAS  Google Scholar 

  23. Bartek, J. & Lukas, J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell Biol. 19, 238–245 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nature Rev. Cancer 3, 155–168 (2003)Describes the key DDR kinases ATM, ATR and DNA-PK, provides an overview of their substrates, and outlines the cellular pathways affected by DNA-damage signalling.

    Article  CAS  Google Scholar 

  25. Riley, T., Sontag, E., Chen, P. & Levine, A. Transcriptional control of human p53-regulated genes. Nature Rev. Mol. Cell Biol. 9, 402–412 (2008)

    Article  CAS  Google Scholar 

  26. Kastan, M. B. & Bartek, J. Cell-cycle checkpoints and cancer. Nature 432, 316–323 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Huen, M. S. & Chen, J. The DNA damage response pathways: at the crossroad of protein modifications. Cell Res. 18, 8–16 (2008)

    Article  CAS  PubMed  Google Scholar 

  28. Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007)Milestone report on the proteomic identification of ATM/ATR substrates and their assignment to various cellular functions, including RNA processing and other protein networks not previously recognized as DDR targets.

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Campisi, J. & d’Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nature Rev. Mol. Cell Biol. 8, 729–740 (2007)

    Article  CAS  Google Scholar 

  30. Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352–1355 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Misteli, T. & Soutoglou, E. The emerging role of nuclear architecture in DNA repair and genome maintenance. Nature Rev. Mol. Cell Biol. 10, 243–254 (2009)

    Article  CAS  Google Scholar 

  32. Ziv, Y. et al. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nature Cell Biol. 8, 870–876 (2006)

    Article  CAS  PubMed  Google Scholar 

  33. Xiao, A. et al. WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature 457, 57–62 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Cook, P. J. et al. Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458, 591–596 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bassing, C. H. & Alt, F. W. The cellular response to general and programmed DNA double-strand breaks. DNA Repair 3, 781–796 (2004)

    Article  CAS  PubMed  Google Scholar 

  36. Schlissel, M. S., Kaffer, C. R. & Curry, J. D. Leukemia and lymphoma: a cost of doing business for adaptive immunity. Genes Dev. 20, 1539–1544 (2006)

    Article  CAS  PubMed  Google Scholar 

  37. Richardson, C., Horikoshi, N. & Pandita, T. K. The role of the DNA double-strand break response network in meiosis. DNA Repair 3, 1149–1164 (2004)

    Article  CAS  PubMed  Google Scholar 

  38. Verdun, R. E. & Karlseder, J. Replication and protection of telomeres. Nature 447, 924–931 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  39. de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005)

    Article  CAS  PubMed  Google Scholar 

  40. d’Adda di Fagagna, F., Teo, S. H. & Jackson, S. P. Functional links between telomeres and proteins of the DNA-damage response. Genes Dev. 18, 1781–1799 (2004)References 39 and 40 illustrate the intimate links between the telomere maintenance and DDR machineries.

    Article  PubMed  Google Scholar 

  41. Longhese, M. P. DNA damage response at functional and dysfunctional telomeres. Genes Dev. 22, 125–140 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sedelnikova, O. A. et al. Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nature Cell Biol. 6, 168–170 (2004)

    Article  CAS  PubMed  Google Scholar 

  43. Niedernhofer, L. J. et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444, 1038–1043 (2006)Reports a powerful mouse model of multifaceted premature ageing, based on engineered deficiency in the Xpf gene involved in transcription-coupled NER.

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Jeyapalan, J. C. & Sedivy, J. M. Cellular senescence and organismal aging. Mech. Ageing Dev. 129, 467–474 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nouspikel, T. P., Hyka-Nouspikel, N. & Hanawalt, P. C. Transcription domain-associated repair in human cells. Mol. Cell. Biol. 26, 8722–8730 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Orii, K. E., Lee, Y., Kondo, N. & McKinnon, P. J. Selective utilization of nonhomologous end-joining and homologous recombination DNA repair pathways during nervous system development. Proc. Natl Acad. Sci. USA 103, 10017–10022 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Park, Y. & Gerson, S. L. DNA repair defects in stem cell function and aging. Annu. Rev. Med. 56, 495–508 (2005)

    Article  CAS  PubMed  Google Scholar 

  48. Nijnik, A. et al. DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447, 686–690 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Rossi, D. J. et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447, 725–729 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Collis, S. J. & Boulton, S. J. Emerging links between the biological clock and the DNA damage response. Chromosoma 116, 331–339 (2007)

    Article  CAS  PubMed  Google Scholar 

  51. Collis, S. J. et al. HCLK2 is essential for the mammalian S-phase checkpoint and impacts on Chk1 stability. Nature Cell Biol. 9, 391–401 (2007)

    Article  CAS  PubMed  Google Scholar 

  52. Kang, T. H., Reardon, J. T., Kemp, M. & Sancar, A. Circadian oscillation of nucleotide excision repair in mammalian brain. Proc. Natl Acad. Sci. USA 106, 2864–2867 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Writing Committee of the Second World Health Organization Consultation on Clinical Aspects of Human Infection with Avian Influenza A (H5N1) Virus Update on avian influenza A (H5N1) virus infection in humans. N. Engl. J. Med. 358, 261–273 (2008)

    Article  Google Scholar 

  54. McCulloch, R. & Barry, J. D. A role for RAD51 and homologous recombination in Trypanosoma brucei antigenic variation. Genes Dev. 13, 2875–2888 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lilley, C. E., Schwartz, R. A. & Weitzman, M. D. Using or abusing: viruses and the cellular DNA damage response. Trends Microbiol. 15, 119–126 (2007)

    Article  CAS  PubMed  Google Scholar 

  56. Narisawa-Saito, M. & Kiyono, T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins. Cancer Sci. 98, 1505–1511 (2007)

    Article  CAS  PubMed  Google Scholar 

  57. Muylaert, I. & Elias, P. Knock-down of DNA ligase IV/ XRCC4 by RNAi inhibits herpes simplex virus type I DNA replication. J. Biol. Chem. 282, 10865–10872 (2007)

    Article  CAS  PubMed  Google Scholar 

  58. Li, H. et al. Chk2 is required for HSV-1 ICP0-mediated G2/M arrest and enhancement of virus growth. Virology 375, 13–23 (2008)

    Article  CAS  PubMed  Google Scholar 

  59. Smith, J. & Daniel, R. Following the path of the virus: the exploitation of host DNA repair mechanisms by retroviruses. ACS Chem. Biol. 1, 217–226 (2006)

    Article  CAS  PubMed  Google Scholar 

  60. Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719–724 (2009)A comprehensive overview of cancer-predisposing mutations and advances in cancer genetics.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Maser, R. S. & DePinho, R. A. Connecting chromosomes, crisis, and cancer. Science 297, 565–569 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Bristow, R. G. & Hill, R. P. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nature Rev. Cancer 8, 180–192 (2008)

    Article  CAS  Google Scholar 

  64. Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Gorgoulis, V. G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907–913 (2005)References 64 and 65 provide evidence for activation of the DDR machinery in early human oncogenic lesions and models of oncogenic transformation, and propose that the DNA-damage checkpoint activated by oncogene-evoked replication stress and DNA breakage provides an inducible barrier against tumour progression.

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Rass, U., Ahel, I. & West, S. C. Defective DNA repair and neurodegenerative disease. Cell 130, 991–1004 (2007)

    Article  CAS  PubMed  Google Scholar 

  67. Kulkarni, A. & Wilson, D. M. The involvement of DNA-damage and -repair defects in neurological dysfunction. Am. J. Hum. Genet. 82, 539–566 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Weissman, L., de Souza-Pinto, N. C., Stevnsner, T. & Bohr, V. A. DNA repair, mitochondria, and neurodegeneration. Neuroscience 145, 1318–1329 (2007)

    Article  CAS  PubMed  Google Scholar 

  69. Caldecott, K. W. Single-strand break repair and genetic disease. Nature Rev. Genet. 9, 619–631 (2008)

    Article  CAS  PubMed  Google Scholar 

  70. Ljungman, M. & Lane, D. P. Transcription—guarding the genome by sensing DNA damage. Nature Rev. Cancer 4, 727–737 (2004)

    Article  CAS  Google Scholar 

  71. Mirkin, S. M. Expandable DNA repeats and human disease. Nature 447, 932–940 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Kovtun, I. V. & McMurray, C. T. Features of trinucleotide repeat instability in vivo . Cell Res. 18, 198–213 (2008)

    Article  CAS  PubMed  Google Scholar 

  73. Yang, J. L., Weissman, L., Bohr, V. A. & Mattson, M. P. Mitochondrial DNA damage and repair in neurodegenerative disorders. DNA Repair 7, 1110–1120 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Matzuk, M. M. & Lamb, D. J. The biology of infertility: research advances and clinical challenges. Nature Med. 14, 1197–1213 (2008)

    Article  CAS  PubMed  Google Scholar 

  75. Bartkova, J., Rajpert-De Meyts, E., Skakkebaek, N. E., Lukas, J. & Bartek, J. DNA damage response in human testes and testicular germ cell tumours: biology and implications for therapy. Int. J. Androl. 30, 282–291 (2007)

    Article  CAS  PubMed  Google Scholar 

  76. Schumacher, B., Garinis, G. A. & Hoeijmakers, J. H. Age to survive: DNA damage and aging. Trends Genet. 24, 77–85 (2008)A thought-provoking review of the evidence for causative links between DNA-damage accumulation and organismal ageing, which proposes the concept of a survival response that allows the organism’s resources to be shifted from emphasis on growth, to survival of DNA damage and other stresses.

    Article  CAS  PubMed  Google Scholar 

  77. Herbig, U., Ferreira, M., Condel, L., Carey, D. & Sedivy, J. M. Cellular senescence in aging primates. Science 311, 1257 (2006)

    Article  CAS  PubMed  Google Scholar 

  78. Sharpless, N. E. & DePinho, R. A. How stem cells age and why this makes us grow old. Nature Rev. Mol. Cell Biol. 8, 703–713 (2007)

    Article  CAS  Google Scholar 

  79. Navarro, S. et al. Hematopoietic dysfunction in a mouse model for Fanconi anemia group D1. Mol. Ther. 14, 525–535 (2006)

    Article  CAS  PubMed  Google Scholar 

  80. Reese, J. S., Liu, L. & Gerson, S. L. Repopulating defect of mismatch repair-deficient hematopoietic stem cells. Blood 102, 1626–1633 (2003)

    Article  CAS  PubMed  Google Scholar 

  81. Mocanu, M. M. & Yellon, D. M. p53 down-regulation: a new molecular mechanism involved in ischaemic preconditioning. FEBS Lett. 555, 302–306 (2003)

    Article  CAS  PubMed  Google Scholar 

  82. Vousden, K. H. & Lane, D. P. p53 in health and disease. Nature Rev. Mol. Cell Biol. 8, 275–283 (2007)

    Article  CAS  Google Scholar 

  83. Mercer, J., Mahmoudi, M. & Bennett, M. DNA damage, p53, apoptosis and vascular disease. Mutat. Res. 621, 75–86 (2007)

    Article  CAS  PubMed  Google Scholar 

  84. Schneider, J. G. et al. ATM-dependent suppression of stress signaling reduces vascular disease in metabolic syndrome. Cell Metab. 4, 377–389 (2006)

    Article  CAS  PubMed  Google Scholar 

  85. Kastan, M. B. DNA damage responses: mechanisms and roles in human disease. 2007 G.H.A. Clowes Memorial Award Lecture. Mol. Cancer Res. 6, 517–524 (2008)

    Article  CAS  PubMed  Google Scholar 

  86. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Helleday, T., Petermann, E., Lundin, C., Hodgson, B. & Sharma, R. A. DNA repair pathways as targets for cancer therapy. Nature Rev. Cancer 8, 193–204 (2008)

    Article  CAS  Google Scholar 

  88. Martin, S. A., Lord, C. J. & Ashworth, A. DNA repair deficiency as a therapeutic target in cancer. Curr. Opin. Genet. Dev. 18, 80–86 (2008)

    Article  CAS  PubMed  Google Scholar 

  89. Jiang, H. et al. The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev. 23, 1895–1909 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  91. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005)References 90 and 91 document the potential of personalized cancer treatment, based on the exceptional sensitivity of tumour cells defective in BRCA1/BRCA2-dependent HR towards small molecule inhibitors of PARP1; these studies support the principle of synthetic-lethal relationships between complementary DDR pathways.

    Article  ADS  CAS  PubMed  Google Scholar 

  92. Chen, Z. et al. Selective Chk1 inhibitors differentially sensitize p53-deficient cancer cells to cancer therapeutics. Int. J. Cancer 119, 2784–2794 (2006)

    Article  CAS  PubMed  Google Scholar 

  93. García-Cao, I. et al. ‘Super p53’ mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J. 21, 6225–6235 (2002)

    Article  PubMed  PubMed Central  Google Scholar 

  94. Pacher, P. & Szabo, C. Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc. Drug Rev. 25, 235–260 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Moroni, F. Poly(ADP-ribose)polymerase 1 (PARP-1) and postischemic brain damage. Curr. Opin. Pharmacol. 8, 96–103 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  96. Guevara, N. V., Kim, H. S., Antonova, E. I. & Chan, L. The absence of p53 accelerates atherosclerosis by increasing cell proliferation in vivo . Nature Med. 5, 335–339 (1999)

    Article  CAS  PubMed  Google Scholar 

  97. Andreassi, M. G. DNA damage, vascular senescence and atherosclerosis. J. Mol. Med. 86, 1033–1043 (2008)

    Article  CAS  PubMed  Google Scholar 

  98. Lau, A. et al. Suppression of HIV-1 infection by a small molecule inhibitor of the ATM kinase. Nature Cell Biol. 7, 493–500 (2005)

    Article  PubMed  CAS  Google Scholar 

  99. Smith, J. A. et al. Evidence that the Nijmegen breakage syndrome protein, an early sensor of double-strand DNA breaks (DSB), is involved in HIV-1 post-integration repair by recruiting the ataxia telangiectasia-mutated kinase in a process similar to, but distinct from, cellular DSB repair. Virol. J. 5, 11 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Moehle, E. A. et al. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc. Natl Acad. Sci. USA 104, 3055–3060 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jackson, S. P. The DNA-damage response: new molecular insights and new approaches to cancer therapy. Biochem. Soc. Trans. 37, 483–494 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Polo and P. Huertas for advice, and K. Dry for expert help with the text and figures. The S.P.J. laboratory is supported by grants from Cancer Research UK, the European Commission (projects GENICA and DNA Repair), the Wellcome Trust and the Biotechnology and Biological Sciences Research Council. The J.B. laboratory is supported by grants from the Danish Cancer Society, the Danish National Research Foundation and the European Commission (projects GENICA, Active p53, TRIREME and DNA Repair).

Author Contributions S.P.J. and J.B. conceived of and wrote all aspects of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Jackson.

Supplementary information

Supplementary Table

This file contains Supplementary Table 1. (PDF 72 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, S., Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009). https://doi.org/10.1038/nature08467

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08467

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing