Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA

Abstract

Mammalian genomes are populated with thousands of transcriptional enhancers that orchestrate cell-type-specific gene expression programs1,2,3,4, but how those enhancers are exploited to institute alternative, signal-dependent transcriptional responses remains poorly understood. Here we present evidence that cell-lineage-specific factors, such as FoxA1, can simultaneously facilitate and restrict key regulated transcription factors, exemplified by the androgen receptor (AR), to act on structurally and functionally distinct classes of enhancer. Consequently, FoxA1 downregulation, an unfavourable prognostic sign in certain advanced prostate tumours, triggers dramatic reprogramming of the hormonal response by causing a massive switch in AR binding to a distinct cohort of pre-established enhancers. These enhancers are functional, as evidenced by the production of enhancer-templated non-coding RNA (eRNA5) based on global nuclear run-on sequencing (GRO-seq) analysis6, with a unique class apparently requiring no nucleosome remodelling to induce specific enhancer–promoter looping and gene activation. GRO-seq data also suggest that liganded AR induces both transcription initiation and elongation. Together, these findings reveal a large repository of active enhancers that can be dynamically tuned to elicit alternative gene expression programs, which may underlie many sequential gene expression events in development, cell differentiation and disease progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FoxA1 contributes to the enhancer code in prostate cancer cells.
Figure 2: AR reprogramming and induced alternative hormonal response.
Figure 3: Transcriptional response on individual enhancer programs to FOXA1 downregulation.
Figure 4: Distinct classes of AR enhancers in the human genome.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

High-throughput data are deposited in Gene ExpressionOmnibus under accession number GSE27823 for all ChIP-seq and GRO-seq experiments and GSE27682 for microarray data.

References

  1. Heintzman, N. D. et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459, 108–112 (2009)

    Article  ADS  CAS  Google Scholar 

  2. Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nature Genet. 39, 311–318 (2007)

    Article  CAS  Google Scholar 

  3. Pennacchio, L. A. et al. In vivo enhancer analysis of human conserved non-coding sequences. Nature 444, 499–502 (2006)

    Article  ADS  CAS  Google Scholar 

  4. Visel, A. et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457, 854–858 (2009)

    Article  ADS  CAS  Google Scholar 

  5. Kim, T. K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010)

    Article  ADS  CAS  Google Scholar 

  6. Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008)

    Article  ADS  CAS  Google Scholar 

  7. Lee, T. I. & Young, R. A. Transcription of eukaryotic protein-coding genes. Annu. Rev. Genet. 34, 77–137 (2000)

    Article  CAS  Google Scholar 

  8. Rosenfeld, M. G., Lunyak, V. V. & Glass, C. K. Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev. 20, 1405–1428 (2006)

    Article  CAS  Google Scholar 

  9. Lupien, M. et al. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132, 958–970 (2008)

    Article  CAS  Google Scholar 

  10. Gao, N. et al. Forkhead box A1 regulates prostate ductal morphogenesis and promotes epithelial cell maturation. Development 132, 3431–3443 (2005)

    Article  CAS  Google Scholar 

  11. Mirosevich, J., Gao, N. & Matusik, R. J. Expression of Foxa transcription factors in the developing and adult murine prostate. Prostate 62, 339–352 (2005)

    Article  CAS  Google Scholar 

  12. Kang, Z., Janne, O. A. & Palvimo, J. J. Coregulator recruitment and histone modifications in transcriptional regulation by the androgen receptor. Mol. Endocrinol. 18, 2633–2648 (2004)

    Article  CAS  Google Scholar 

  13. Shim, E. Y., Woodcock, C. & Zaret, K. S. Nucleosome positioning by the winged helix transcription factor HNF3. Genes Dev. 12, 5–10 (1998)

    Article  CAS  Google Scholar 

  14. Holmqvist, P. H., Belikov, S., Zaret, K. S. & Wrange, O. FoxA1 binding to the MMTV LTR modulates chromatin structure and transcription. Exp. Cell Res. 304, 593–603 (2005)

    Article  CAS  Google Scholar 

  15. Crowe, A. J. et al. Hepatocyte nuclear factor 3 relieves chromatin-mediated repression of the α-fetoprotein gene. J. Biol. Chem. 274, 25113–25120 (1999)

    Article  CAS  Google Scholar 

  16. Cirillo, L. A. et al. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol. Cell 9, 279–289 (2002)

    Article  CAS  Google Scholar 

  17. Wang, Q. et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138, 245–256 (2009)

    Article  CAS  Google Scholar 

  18. Hurtado, A., Holmes, K. A., Ross-Innes, C. S., Schmidt, D. & Carroll, J. S. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nature Genet. 43, 27–33 (2011)

    Article  CAS  Google Scholar 

  19. Thomsen, M. K. et al. SOX9 elevation in the prostate promotes proliferation and cooperates with PTEN loss to drive tumor formation. Cancer Res. 70, 979–987 (2010)

    Article  CAS  Google Scholar 

  20. Wang, H. et al. SOX9 is expressed in human fetal prostate epithelium and enhances prostate cancer invasion. Cancer Res. 68, 1625–1630 (2008)

    Article  CAS  Google Scholar 

  21. Ogawa, S. et al. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 122, 707–721 (2005)

    Article  CAS  Google Scholar 

  22. Lee, H. J., Hwang, M., Chattopadhyay, S., Choi, H. S. & Lee, K. Hepatocyte nuclear factor-3α (HNF-3α) negatively regulates androgen receptor transactivation in prostate cancer cells. Biochem. Biophys. Res. Commun. 367, 481–486 (2008)

    Article  CAS  Google Scholar 

  23. Gao, N. et al. The role of hepatocyte nuclear factor-3α (Forkhead Box A1) and androgen receptor in transcriptional regulation of prostatic genes. Mol. Endocrinol. 17, 1484–1507 (2003)

    Article  CAS  Google Scholar 

  24. Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010)

    Article  ADS  CAS  Google Scholar 

  25. He, H. H. et al. Nucleosome dynamics define transcriptional enhancers. Nature Genet. 42, 343–347 (2010)

    Article  CAS  Google Scholar 

  26. Laitinen, S., Karhu, R., Sawyers, C. L., Vessella, R. L. & Visakorpi, T. Chromosomal aberrations in prostate cancer xenografts detected by comparative genomic hybridization. Genes Chromosom. Cancer 35, 66–73 (2002)

    Article  CAS  Google Scholar 

  27. Legrier, M. E. et al. Hormone escape is associated with genomic instability in a human prostate cancer model. Int. J. Cancer 124, 1103–1111 (2009)

    Article  CAS  Google Scholar 

  28. Wolf, M. et al. High-resolution analysis of gene copy number alterations in human prostate cancer using CGH on cDNA microarrays: impact of copy number on gene expression. Neoplasia 6, 240–247 (2004)

    Article  CAS  Google Scholar 

  29. Garcia-Bassets, I. et al. Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. Cell 128, 505–518 (2007)

    Article  CAS  Google Scholar 

  30. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009)

    Article  ADS  CAS  Google Scholar 

  31. Hu, Q. et al. Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules. Proc. Natl Acad. Sci. USA 105, 19199–19204 (2008)

    Article  ADS  CAS  Google Scholar 

  32. Holbro, T. et al. The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to derive breast tumor cell proliferation. Proc. Natl Acad. Sci. USA 100, 8933–8938 (2003)

    Article  ADS  CAS  Google Scholar 

  33. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010)

    Article  CAS  Google Scholar 

  34. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007)

    Article  CAS  Google Scholar 

  35. Linhart, C., Halperin, Y. & Shamir, R. Transcription factor and microRNA motif discovery: the Amadeus platform and a compendium of metazoan target sets. Genome Res. 18, 1180–1189 (2008)

    Article  CAS  Google Scholar 

  36. Chandran, U. R. et al. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer 7, 64 (2007)

    Article  Google Scholar 

  37. Yu, Y. P. et al. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J. Clin. Oncol. 22, 2790–2799 (2004)

    Article  CAS  Google Scholar 

  38. Varambally, S. et al. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 8, 393–406 (2005)

    Article  CAS  Google Scholar 

  39. Glinsky, G. V., Glinskii, A. B., Stephenson, A. J., Hoffman, R. M. & Gerald, W. L. Gene expression profiling predicts clinical outcome of prostate cancer. J. Clin. Invest. 113, 913–923 (2004)

    Article  CAS  Google Scholar 

  40. Taylor, B. S. et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11–22 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to H.-J. Kung for providing the PC3-AR cell lines, C. Sawyers for providing the LNCaP-AR cell line, and J. Hightower, D. Benson and M. Fisher for assistance with figure and manuscript preparation. This work was supported by grants from US Army Medical Research and Material Command (grant W81XWH-05-1-0100) to I.G.-B., the National Institutes of Health (DK01847, DK37949, DK074868, NS34934), Department of Defense and the National Cancer Institute (CA97134) to M.G.R.; the National Institutes of Health (GM049369 and HG004659) to X.-D.F.; and the Prostate Cancer Foundation to M.G.R. and X.-D.F. M.G.R. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

D.W., I.G.-B., M.G.R. and X.-D.F. designed the experiments; D.W. and I.G.B. performed most of them. C.B. performed all computational analyses. W.L. and M.K. performed GRO-seq; X.S. performed the 3C assay; Y.Z. analysed human samples; and J.Q. performed proliferation assays. K.A.O. and W.L. generated AR constructs. I.G.-B., D.W., M.G.R. and X.-D.F. wrote the manuscript with contributions from C.B. and C.K.G.

Corresponding authors

Correspondence to Ivan Garcia-Bassets, Michael G. Rosenfeld or Xiang-Dong Fu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-25 with legends. (PDF 1973 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Garcia-Bassets, I., Benner, C. et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474, 390–394 (2011). https://doi.org/10.1038/nature10006

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10006

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing