Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fanconi anaemia and the repair of Watson and Crick DNA crosslinks

Abstract

The function of Fanconi anaemia proteins is to maintain genomic stability. Their main role is in the repair of DNA interstrand crosslinks, which, by covalently binding the Watson and the Crick strands of DNA, impede replication and transcription. Inappropriate repair of interstrand crosslinks causes genomic instability, leading to cancer; conversely, the toxicity of crosslinking agents makes them a powerful chemotherapeutic. Fanconi anaemia proteins can promote stem-cell function, prevent tumorigenesis, stabilize replication forks and inhibit inaccurate repair. Recent advances have identified endogenous aldehydes as possible culprits of DNA damage that may induce the phenotypes seen in patients with Fanconi anaemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Fanconi anaemia pathway and interstrand crosslink repair.
Figure 2: The diverse functions of the Fanconi anaemia pathway.

Similar content being viewed by others

References

  1. Rosenberg, P. S., Tamary, H. & Alter, B. P. How high are carrier frequencies of rare recessive syndromes? Contemporary estimates for Fanconi anemia in the United States and Israel. Am. J. Med. Genet. A 155A, 1877–1883 (2011).

    Article  PubMed  Google Scholar 

  2. Auerbach, A. D. Fanconi anemia and its diagnosis. Mutat. Res. 668, 4–10 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ceccaldi, R. et al. Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells. Cell Stem Cell 11, 36–49 (2012). This study identifies activation of the p53–p21 axis as a major contributing factor to loss of haematopoietic stem cells in Fanconi anaemia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tulpule, A. et al. Knockdown of Fanconi anemia genes in human embryonic stem cells reveals early developmental defects in the hematopoietic lineage. Blood 115, 3453–3462 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vinciguerra, P., Godinho, S. A., Parmar, K., Pellman, D. & D'Andrea, A. D. Cytokinesis failure occurs in Fanconi anemia pathway-deficient murine and human bone marrow hematopoietic cells. J. Clin. Invest. 120, 3834–3842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Muller, L. U. et al. Overcoming reprogramming resistance of Fanconi anemia cells. Blood 119, 5449–5457 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Raya, A. et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460, 53–59 (2009). This paper demonstrates that human fibroblasts deficient in the Fanconi anaemia pathway are refractory to reprogramming into iPS cells unless they are first corrected with an appropriate gene, and that Fanconi anaemia-corrected cells can be reprogrammed into iPS cells that give rise to phenotypically normal lineages.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deans, A. J. & West, S. C. DNA interstrand crosslink repair and cancer. Nature Rev. Cancer 11, 467–480 (2011).

    Article  CAS  Google Scholar 

  9. Meindl, A. et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nature Genet. 42, 410–414 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Rafnar, T. et al. Mutations in BRIP1 confer high risk of ovarian cancer. Nature Genet. 43, 1104–1107 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Rahman, N. et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nature Genet. 39, 165–167 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Seal, S. et al. Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nature Genet. 38, 1239–1241 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Tischkowitz, M. et al. Analysis of PALB2/FANCN-associated breast cancer families. Proc. Natl Acad. Sci. USA 104, 6788–6793 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Walsh, T. et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc. Natl Acad. Sci. USA 108, 18032–18037 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Howlett, N. G. et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297, 606–609 (2002). This paper identifies the breast cancer predisposition gene BRCA2 as mutated in a very severe form of Fanconi anaemia, firmly establishing Fanconi anaemia as a DNA repair deficiency disease.

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Xia, B. et al. Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nature Genet. 39, 159–161 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Levran, O. et al. The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia. Nature Genet. 37, 931–933 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Levitus, M. et al. The DNA helicase BRIP1 is defective in Fanconi anemia complementation group J. Nature Genet. 37, 934–935 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Vaz, F. et al. Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nature Genet. 42, 406–409 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Enoiu, M., Jiricny, J. & Schäerer, O. D. Repair of cisplatin-induced DNA interstrand crosslinks by a replication-independent pathway involving transcription-coupled repair and translesion synthesis. Nucleic Acids Res. 40, 8953–8964 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, X. et al. Involvement of nucleotide excision repair in a recombination-independent and error-prone pathway of DNA interstrand cross-link repair. Mol. Cell. Biol. 21, 713–720 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shen, X. et al. Recruitment of Fanconi anemia and breast cancer proteins to DNA damage sites is differentially governed by replication. Mol. Cell 35, 716–723 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Knipscheer, P. et al. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 326, 1698–1701 (2009). This work uses a cell-free system to demonstrate the requirement for FANCD2 and FANCI in the replication-dependent repair of interstrand crosslinks.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Raschle, M. et al. Mechanism of replication-coupled DNA interstrand crosslink repair. Cell 134, 969–980 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Long, D. T., Raschle, M., Joukov, V. & Walter, J. C. Mechanism of RAD51-dependent DNA interstrand cross-link repair. Science 333, 84–87 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smogorzewska, A. et al. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129, 289–301 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Taniguchi, T. et al. S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood 100, 2414–2420 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Alpi, A. F., Pace, P. E., Babu, M. M. & Patel, K. J. Mechanistic insight into site-restricted monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI. Mol. Cell 32, 767–777 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Machida, Y. J. et al. UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. Mol. Cell 23, 589–596 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Meetei, A. R. et al. A novel ubiquitin ligase is deficient in Fanconi anemia. Nature Genet. 35, 165–170 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Ishiai, M. et al. FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nature Struct. Mol. Biol. 15, 1138–1146 (2008).

    Article  CAS  Google Scholar 

  32. Sato, K., Toda, K., Ishiai, M., Takata, M. & Kurumizaka, H. DNA robustly stimulates FANCD2 monoubiquitylation in the complex with FANCI. Nucleic Acids Res. 40, 4553–4561 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sato, K. et al. Histone chaperone activity of Fanconi anemia proteins, FANCD2 and FANCI, is required for DNA crosslink repair. EMBO J. 31, 3524–3536 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nijman, S. M. et al. The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol. Cell 17, 331–339 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Kim, J. M. et al. Inactivation of murine Usp1 results in genomic instability and a Fanconi anemia phenotype. Dev. Cell 16, 314–320 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Oestergaard, V. H. et al. Deubiquitination of FANCD2 is required for DNA crosslink repair. Mol. Cell 28, 798–809 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim, Y. et al. Mutations of the SLX4 gene in Fanconi anemia. Nature Genet. 43, 142–146 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Kratz, K. et al. Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents. Cell 142, 77–88 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, T., Ghosal, G., Yuan, J., Chen, J. & Huang, J. FAN1 acts with FANCI–FANCD2 to promote DNA interstrand cross-link repair. Science 329, 693–696 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. MacKay, C. et al. Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell 142, 65–76 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Smogorzewska, A. et al. A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. Mol. Cell 39, 36–47 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stoepker, C. et al. SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype. Nature Genet. 43, 138–141 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Fekairi, S. et al. Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases. Cell 138, 78–89 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Svendsen, J. M. et al. Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair. Cell 138, 63–77 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Andersen, S. L. et al. Drosophila MUS312 and the vertebrate ortholog BTBD12 interact with DNA structure-specific endonucleases in DNA repair and recombination. Mol. Cell 35, 128–135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Munoz, I. M. et al. Coordination of structure-specific nucleases by human SLX4/BTBD12 is required for DNA repair. Mol. Cell 35, 116–127 (2009). References 43–46 have identified SLX4 as a partner to multiple DNA repair nucleases necessary for interstrand crosslink repair.

    Article  CAS  PubMed  Google Scholar 

  47. Bhagwat, N. et al. XPF–ERCC1 participates in the Fanconi anemia pathway of cross-link repair. Mol. Cell. Biol. 29, 6427–6437 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, Y., Spitz, G. S., Veturi, U., Lach, F. P., Auerbach, A. D. & Smogorzewska, A. Regulation of multiple DNA repair pathways by the Fanconi anemia protein SLX4. Blood http://dx.doi.org/10.1182/blood-2012-07-441212 (23 October 2012).

  49. Wang, A. T. et al. Human SNM1A and XPF–ERCC1 collaborate to initiate DNA interstrand cross-link repair. Genes Dev. 25, 1859–1870 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhou, W. et al. FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair. Nature Genet. 44, 910–915 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Howlett, N. G., Taniguchi, T., Durkin, S. G., D'Andrea, A. D. & Glover, T. W. The Fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability. Hum. Mol. Genet. 14, 693–701 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Schlacher, K. et al. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145, 529–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schlacher, K., Wu, H. & Jasin, M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22, 106–116 (2012). This work identifies an important role for FANCD2, BRCA1 and BRCA2 in protecting the stability of replication forks, illuminating a repair-independent function for these proteins in genome maintenance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Peng, M. et al. The FANCJ/MutLα interaction is required for correction of the cross-link response in FA-J cells. EMBO J. 26, 3238–3249 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Williams, S. A. et al. Functional and physical interaction between the mismatch repair and FA-BRCA pathways. Hum. Mol. Genet. 20, 4395–4410 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu, L. & Hickson, I. D. The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 426, 870–874 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Chan, K. L., Palmai-Pallag, T., Ying, S. & Hickson, I. D. Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nature Cell Biol. 11, 753–760 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Wechsler, T., Newman, S. & West, S. C. Aberrant chromosome morphology in human cells defective for Holliday junction resolution. Nature 471, 642–646 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lieber, M. R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Karanam, K., Kafri, R., Loewer, A. & Lahav, G. Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. Mol. Cell 47, 320–329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Symington, L. S. & Gautier, J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45, 247–271 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Youds, J. L., Barber, L. J. & Boulton, S. J. C. elegans: a model of Fanconi anemia and ICL repair. Mutat. Res. 668, 103–116 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Adamo, A. et al. Preventing nonhomologous end joining suppresses DNA repair defects of Fanconi anemia. Mol. Cell 39, 25–35 (2010). This work investigates the relationship between the Fanconi anaemia pathway and NHEJ, suggesting that the Fanconi anaemia cellular phenotypes derive from aberrant repair by NHEJ.

    Article  CAS  PubMed  Google Scholar 

  64. Pace, P. et al. Ku70 corrupts DNA repair in the absence of the Fanconi anemia pathway. Science 329, 219–223 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Houghtaling, S. et al. Fancd2 functions in a double strand break repair pathway that is distinct from non-homologous end joining. Hum. Mol. Genet. 14, 3027–3033 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Bunting, S. F. et al. BRCA1 functions independently of homologous recombination in DNA interstrand crosslink repair. Mol. Cell 46, 125–135 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, Y., Ghosh, G. & Hendrickson, E. A. Ku86 represses lethal telomere deletion events in human somatic cells. Proc. Natl Acad. Sci. USA 106, 12430–12435 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pang, Q. & Andreassen, P. R. Fanconi anemia proteins and endogenous stresses. Mutat. Res. 668, 42–53 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Marietta, C., Thompson, L. H., Lamerdin, J. E. & Brooks, P. J. Acetaldehyde stimulates FANCD2 monoubiquitination, H2AX phosphorylation, and BRCA1 phosphorylation in human cells in vitro: implications for alcohol-related carcinogenesis. Mutat. Res. 664, 77–83 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ridpath, J. R. et al. Cells deficient in the FANC/BRCA pathway are hypersensitive to plasma levels of formaldehyde. Cancer Res. 67, 11117–11122 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Hadjur, S. et al. Defective hematopoiesis and hepatic steatosis in mice with combined deficiencies of the genes encoding Fancc and Cu/Zn superoxide dismutase. Blood 98, 1003–1011 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Langevin, F., Crossan, G. P., Rosado, I. V., Arends, M. J. & Patel, K. J. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 475, 53–58 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Rosado, I. V., Langevin, F., Crossan, G. P., Takata, M. & Patel, K. J. Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway. Nature Struct. Mol. Biol. 18, 1432–1434 (2011).

    Article  CAS  Google Scholar 

  74. Garaycoechea, J. I. et al. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature 489, 571–575 (2012). References 72 and 74 demonstrate that increasing aldehyde load in Fanconi anaemia mutant mice leads to phenotypes that are strikingly similar to those of the human disease, including developmental abnormalities, leukaemia and bone-marrow failure.

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Berwick, M. et al. Genetic heterogeneity among Fanconi anemia heterozygotes and risk of cancer. Cancer Res. 67, 9591–9596 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Auerbach, S. Gregg, E. Garner, Y. Kim, S. Thongthip and A. Wang for their comments. Work in our laboratory is supported by the Burroughs Wellcome Fund Career Award for Medical Scientists, the Starr Center Consortium grant, and by grant number 8 UL1 TR000043 from the National Center for Research Resources and the National Center for Advancing Translational Sciences (NCATS), National Institutes of Health. A.S. is a Rita Allen Foundation, Irma T. Hirschl, Alexandrine and Alexander Sinsheimer Foundation scholar, and is a recipient of the Doris Duke Clinical Scientist Development Award. M.C.K. is supported by an American Cancer Society-J.T.Tai postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agata Smogorzewska.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kottemann, M., Smogorzewska, A. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature 493, 356–363 (2013). https://doi.org/10.1038/nature11863

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11863

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing