Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate

Abstract

Phosphoinositides serve crucial roles in cell physiology, ranging from cell signalling to membrane traffic1,2. Among the seven eukaryotic phosphoinositides the best studied species is phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), which is concentrated at the plasma membrane where, among other functions, it is required for the nucleation of endocytic clathrin-coated pits3,4,5,6. No phosphatidylinositol other than PI(4,5)P2 has been implicated in clathrin-mediated endocytosis, whereas the subsequent endosomal stages of the endocytic pathway are dominated by phosphatidylinositol-3-phosphates(PI(3)P)7. How phosphatidylinositol conversion from PI(4,5)P2-positive endocytic intermediates to PI(3)P-containing endosomes is achieved is unclear. Here we show that formation of phosphatidylinositol-3,4-bisphosphate (PI(3,4)P2) by class II phosphatidylinositol-3-kinase C2α (PI(3)K C2α) spatiotemporally controls clathrin-mediated endocytosis. Depletion of PI(3,4)P2 or PI(3)K C2α impairs the maturation of late-stage clathrin-coated pits before fission. Timed formation of PI(3,4)P2 by PI(3)K C2α is required for selective enrichment of the BAR domain protein SNX9 at late-stage endocytic intermediates. These findings provide a mechanistic framework for the role of PI(3,4)P2 in endocytosis and unravel a novel discrete function of PI(3,4)P2 in a central cell physiological process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PI(3,4)P2 regulates CME.
Figure 2: PI(3)K C2α controls maturation of CCPs.
Figure 3: PI(3,4)P2 synthesis by PI(3)K C2α at CCPs.
Figure 4: SNX9 is a PI(3,4)P2 effector at CCPs.

Similar content being viewed by others

References

  1. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006)

    Article  ADS  CAS  Google Scholar 

  2. Wymann, M. P. & Schneiter, R. Lipid signalling in disease. Nature Rev. Mol. Cell Biol. 9, 162–176 (2008)

    Article  CAS  Google Scholar 

  3. Krauss, M., Kukhtina, V., Pechstein, A. & Haucke, V. Stimulation of phosphatidylinositol kinase type I-mediated phosphatidylinositol (4,5)-bisphosphate synthesis by AP-2μ-cargo complexes. Proc. Natl Acad. Sci. USA 103, 11934–11939 (2006)

    Article  ADS  CAS  Google Scholar 

  4. Loerke, D. et al. Cargo and dynamin regulate clathrin-coated pit maturation. PLoS Biol. 7, e57 (2009)

    Article  Google Scholar 

  5. McMahon, H. T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nature Rev. Mol. Cell Biol. 12, 517–533 (2011)

    Article  CAS  Google Scholar 

  6. Zoncu, R. et al. Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate. Proc. Natl Acad. Sci. USA 104, 3793–3798 (2007)

    Article  ADS  CAS  Google Scholar 

  7. Gruenberg, J. Lipids in endocytic membrane transport and sorting. Curr. Opin. Cell Biol. 15, 382–388 (2003)

    Article  CAS  Google Scholar 

  8. Antonescu, C. N., Aguet, F., o, Danuser, G. & Schmid, S. L. Phosphatidylinositol-(4,5)-bisphosphate regulates clathrin-coated pit initiation, stabilization, and size. Mol. Biol. Cell 22, 2588–2600 (2011)

    Article  CAS  Google Scholar 

  9. Chang-Ileto, B. et al. Synaptojanin 1-mediated PI(4,5)P2 hydrolysis is modulated by membrane curvature and facilitates membrane fission. Dev. Cell 20, 206–218 (2011)

    Article  CAS  Google Scholar 

  10. Shin, H.-W. et al. An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. J. Cell Biol. 170, 607–618 (2005)

    Article  CAS  Google Scholar 

  11. Bae, Y. H. et al. Profilin1 regulates PI(3,4)P2 and lamellipodin accumulation at the leading edge thus influencing motility of MDA-MB-231 cells. Proc. Natl Acad. Sci. USA 107, 21547–21552 (2010)

    Article  ADS  CAS  Google Scholar 

  12. Dowler, S. et al. Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem. J. 351, 19–31 (2000)

    Article  CAS  Google Scholar 

  13. Gewinner, C. et al. Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell 16, 115–125 (2009)

    Article  CAS  Google Scholar 

  14. Fili, N., Calleja, V., Woscholski, R., Parker, P. J. & Larijani, B. Compartmental signal modulation: endosomal phosphatidylinositol 3-phosphate controls endosome morphology and selective cargo sorting. Proc. Natl Acad. Sci. USA 103, 15473–15478 (2006)

    Article  ADS  CAS  Google Scholar 

  15. Ferguson, S. M. et al. Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev. Cell 17, 811–822 (2009)

    Article  CAS  Google Scholar 

  16. Rameh, L. E. & Cantley, L. C. The role of phosphoinositide 3-kinase lipid products in cell function. J. Biol. Chem. 274, 8347–8350 (1999)

    Article  CAS  Google Scholar 

  17. Gaidarov, I., Smith, M. E., Domin, J. & Keen, J. H. The class II phosphoinositide 3-kinase C2α is activated by clathrin and regulates clathrin-mediated membrane trafficking. Mol. Cell 7, 443–449 (2001)

    Article  CAS  Google Scholar 

  18. Stahelin, R. V. et al. Structural and membrane binding analysis of the Phox homology domain of phosphoinositide 3-kinase-C2α. J. Biol. Chem. 281, 39396–39406 (2006)

    Article  CAS  Google Scholar 

  19. Domin, J. et al. Cloning of a human phosphoinositide 3-kinase with a C2 domain that displays reduced sensitivity to the inhibitor wortmannin. Biochem. J. 326, 139–147 (1997)

    Article  CAS  Google Scholar 

  20. Borner, G. H. H. et al. Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles. J. Cell Biol. 197, 141–160 (2012)

    Article  CAS  Google Scholar 

  21. Falasca, M. et al. The role of phosphoinositide 3-kinase C2α in insulin signaling. J. Biol. Chem. 282, 28226–28236 (2007)

    Article  CAS  Google Scholar 

  22. Leibiger, B. et al. Insulin-feedback via PI3K–C2α activated PKBα/Akt1 is required for glucose-stimulated insulin secretion. FASEB J. 24, 1824–1837 (2010)

    Article  CAS  Google Scholar 

  23. Pirola, L. et al. Activation loop sequences confer substrate specificity to phosphoinositide 3-kinase α (PI3Kα). Functions of lipid kinase-deficient PI3Kα in signaling. J. Biol. Chem. 276, 21544–21554 (2001)

    Article  CAS  Google Scholar 

  24. Subramanian, D. et al. Activation of membrane-permeant caged PtdIns(3)P induces endosomal fusion in cells. Nature Chem. Biol. 6, 324–326 (2010)

    Article  CAS  Google Scholar 

  25. Park, J. et al. SNX18 shares a redundant role with SNX9 and modulates endocytic trafficking at the plasma membrane. J. Cell Sci. 123, 1742–1750 (2010)

    Article  CAS  Google Scholar 

  26. Yarar, D., Surka, M. C., Leonard, M. C. & Schmid, S. L. SNX9 activities are regulated by multiple phosphoinositides through both PX and BAR domains. Traffic 9, 133–146 (2008)

    Article  CAS  Google Scholar 

  27. Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735–749 (2005)

    Article  CAS  Google Scholar 

  28. Malecz, N. et al. Synaptojanin 2, a novel Rac1 effector that regulates clathrin-mediated endocytosis. Curr. Biol. 10, 1383–1386 (2000)

    Article  CAS  Google Scholar 

  29. Varnai, P., Thyagarajan, B., Rohacs, T. & Balla, T. Rapidly inducible changes in phosphatidylinositol 4,5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells. J. Cell Biol. 175, 377–382 (2006)

    Article  CAS  Google Scholar 

  30. Gaidarov, I., Zhao, Y. & Keen, J. H. Individual phosphoinositide 3-kinase C2α domain activities independently regulate clathrin function. J. Biol. Chem. 280, 40766–40772 (2005)

    Article  CAS  Google Scholar 

  31. Pylypenko, O., Lundmark, R., Rasmuson, E., Carlsson, S. R. & Rak, A. The PX-BAR membrane-remodeling unit of sorting nexin 9. EMBO J. 26, 4788–4800 (2007)

    Article  CAS  Google Scholar 

  32. Maritzen, T. et al. Gadkin negatively regulates cell spreading and motility via sequestration of the actin-nucleating ARP2/3 complex. Proc. Natl Acad. Sci. USA 109, 10382–10387 (2012)

    Article  ADS  CAS  Google Scholar 

  33. Laketa, V. et al. Membrane-permeant phosphoinositide derivatives as modulators of growth factor signaling and neurite outgrowth. Chem. Biol. 16, 1190–1196 (2009)

    Article  CAS  Google Scholar 

  34. von Kleist, L. et al. Role of the clathrin terminal domain in regulating coated pit dynamics revealed by small molecule inhibition. Cell 146, 471–484 (2011)

    Article  CAS  Google Scholar 

  35. Campbell, C., Squicciarini, J., Shia, M., Pilch, P. F. & Fine, R. E. Identification of a protein kinase as an intrinsic component of rat liver coated vesicles. Biochemistry 23, 4420–4426 (1984)

    Article  CAS  Google Scholar 

  36. Wieffer, M., Haucke, V. & Krauss, M. Regulation of phosphoinositide-metabolizing enzymes by clathrin coat proteins. Methods Cell Biol. 108, 209–225 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Ungewickell, P. Di Fiore, P. De Camilli, H. McMahon, E. Wancker, T. Südhof and S. Carlsson for antibodies, L. Cantley, T. Takenawa, M. Wymann, T. Ross, O. Daumke and W. Yang for plasmids, and O. Daumke, B. Eickolt and F. Wieland for critical comments. Supported by grants from the Deutsche Forschungsgemeinschaft (SFB 740/C8; SFB 740/D7; SFB 958/A04; SFB 958/A07; SFB 958/Z02).

Author information

Authors and Affiliations

Authors

Contributions

Y.P., M.E.-G., D.P., M.K. performed experiments; R.M., S.Z., C.S. provided reagents; A.L. and J.S. aided with microscopy; Y.P., M.E.-G., J.S., F.N. and V.H. designed research; F.G. and E.H. contributed reagents; J.S., A.U. and. F.N. conducted simulations. Y.P., F.N. and V.H. wrote the manuscript.

Corresponding author

Correspondence to Volker Haucke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-8 and Supplementary Table 1. (PDF 10942 kb)

Depletion of PI(3,4)P2 attenuates CCP dynamics

The peripheral regions of two neighbouring eGFP-clathrin light chain expressing cells imaged by TIRF microscopy shown for 3 min. The cell on the right suffers from PI(3,4)P2 depletion due to co-expression of mCherry-INPP4B-CAAX . For clarity, a dotted line has been drawn along the border between the two cells. Note the strikingly attenuated CCPs dynamics in the PI(3,4)P2-depleted cell. (MOV 7431 kb)

Attenuated CCP dynamics upon depletion of PI3K C2α

Videos 2 and 3 show representative areas from eGFP-clathrin light chain expressing cells treated with scrambled or PI3K C2α siRNAs, respectively, imaged by TIRF microscopy for 3 min. CCPs in control cells (video 2; scrambled siRNA) display a dynamic succession of appearance, growth, and disappearance (internalization). By contrast, CCPs in PI3K C2α-depleted cells (video 3; PI3K C2α-siRNA) are long-lived and stable over time, indicative of defective CCP maturation. (MOV 4251 kb)

Attenuated CCP dynamics upon depletion of PI3K C2α

Videos 2 and 3 show representative areas from eGFP-clathrin light chain expressing cells treated with scrambled or PI3K C2α siRNAs, respectively, imaged by TIRF microscopy for 3 min. CCPs in control cells (video 2; scrambled siRNA) display a dynamic succession of appearance, growth, and disappearance (internalization). By contrast, CCPs in PI3K C2α-depleted cells (video 3; PI3K C2α-siRNA) are long-lived and stable over time, indicative of defective CCP maturation. (MOV 3910 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Posor, Y., Eichhorn-Gruenig, M., Puchkov, D. et al. Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate. Nature 499, 233–237 (2013). https://doi.org/10.1038/nature12360

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12360

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing