Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolism of stromal and immune cells in health and disease

Abstract

Cancer cells have been at the centre of cell metabolism research, but the metabolism of stromal and immune cells has received less attention. Nonetheless, these cells influence the progression of malignant, inflammatory and metabolic disorders. Here we discuss the metabolic adaptations of stromal and immune cells in health and disease, and highlight how metabolism determines their differentiation and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endothelial cell metabolism.
Figure 2: Fibroblast metabolism.
Figure 3: T-cell metabolism.
Figure 4: Macrophage metabolism.

Similar content being viewed by others

References

  1. Carmeliet, P. & Jain, R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rask-Madsen, C. & King, G. L. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab. 17, 20–33 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Junttila, M. R. & de Sauvage, F. J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346–354 (2013)

    ADS  CAS  PubMed  Google Scholar 

  4. Galluzzi, L., Kepp, O., Vander Heiden, M. G. & Kroemer, G. Metabolic targets for cancer therapy. Nature Rev. Drug Discov. 12, 829–846 (2013)Provides a comprehensive overview of metabolic targets that may also be suitable for use in stromal and immune cells.

    CAS  Google Scholar 

  5. Schulze, A. & Harris, A. L. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491, 364–373 (2012)

    ADS  CAS  PubMed  Google Scholar 

  6. Lunt, S. Y. & Vander Heiden, M. G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011)

    CAS  PubMed  Google Scholar 

  7. DeBerardinis, R. J. & Thompson, C. B. Cellular metabolism and disease: what do metabolic outliers teach us? Cell 148, 1132–1144 (2012)Refs 5–7 highlight emerging concepts of the role of metabolism in cell proliferation and cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Casazza, A. et al. Tumor stroma: a complexity dictated by the hypoxic tumor microenvironment. Oncogene 33, 1743–1754 (2014)

    CAS  PubMed  Google Scholar 

  9. Potente, M., Gerhardt, H. & Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 146, 873–887 (2011)

    CAS  PubMed  Google Scholar 

  10. De Bock, K. et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154, 651–663 (2013)The first description of how metabolism can alter tip cell competitiveness in endothelial sprouting in vitro and in vivo.

    CAS  PubMed  Google Scholar 

  11. Barth, E., Stammler, G., Speiser, B. & Schaper, J. Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J. Mol. Cell. Cardiol. 24, 669–681 (1992)

    CAS  PubMed  Google Scholar 

  12. Quintero, M., Colombo, S. L., Godfrey, A. & Moncada, S. Mitochondria as signaling organelles in the vascular endothelium. Proc. Natl Acad. Sci. USA 103, 5379–5384 (2006)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chung, S. J. et al. Pyruvate protection against endothelial cytotoxicity induced by blockade of glucose uptake. J. Biochem. Mol. Biol. 37, 239–245 (2004)

    CAS  PubMed  Google Scholar 

  14. Schoors, S. et al. Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab. 19, 37–48 (2014)Demonstrates that targeting endothelial cell metabolism can inhibit pathological angiogenesis.

    CAS  PubMed  Google Scholar 

  15. Locasale, J. W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nature Genet. 43, 869–874 (2011)

    CAS  PubMed  Google Scholar 

  16. Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nature Rev. Cancer 4, 891–899 (2004)

    CAS  Google Scholar 

  17. Mertens, S., Noll, T., Spahr, R., Krutzfeldt, A. & Piper, H. M. Energetic response of coronary endothelial cells to hypoxia. Am. J. Physiol. 258, H689–H694 (1990)

    CAS  PubMed  Google Scholar 

  18. Leopold, J. A. et al. Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity. Nature Med. 13, 189–197 (2007)

    CAS  PubMed  Google Scholar 

  19. Leopold, J. A., Zhang, Y. Y., Scribner, A. W., Stanton, R. C. & Loscalzo, J. Glucose-6-phosphate dehydrogenase overexpression decreases endothelial cell oxidant stress and increases bioavailable nitric oxide. Arterioscler. Thromb. Vasc. Biol. 23, 411–417 (2003)

    CAS  PubMed  Google Scholar 

  20. Spolarics, Z., Lang, C. H., Bagby, G. J. & Spitzer, J. J. Glutamine and fatty acid oxidation are the main sources of energy for Kupffer and endothelial cells. Am. J. Physiol. 261, G185–G190 (1991)

    CAS  PubMed  Google Scholar 

  21. Polet, F. & Feron, O. Endothelial cell metabolism and tumour angiogenesis: glucose and glutamine as essential fuels and lactate as the driving force. J. Intern. Med. 273, 156–165 (2013)

    CAS  PubMed  Google Scholar 

  22. Unterluggauer, H. et al. Premature senescence of human endothelial cells induced by inhibition of glutaminase. Biogerontology 9, 247–259 (2008)

    CAS  PubMed  Google Scholar 

  23. Wu, G., Haynes, T. E., Li, H. & Meininger, C. J. Glutamine metabolism in endothelial cells: ornithine synthesis from glutamine via pyrroline-5-carboxylate synthase. Comp. Biochem. Physiol. Physiol. 126, 115–123 (2000)

    CAS  Google Scholar 

  24. Carracedo, A., Cantley, L. C. & Pandolfi, P. P. Cancer metabolism: fatty acid oxidation in the limelight. Nature Rev. Cancer 13, 227–232 (2013)A comprehensive overview of FAO-related pathways in cancer that may provide putative targets for stromal and immune cell metabolism.

    CAS  Google Scholar 

  25. Dagher, Z., Ruderman, N., Tornheim, K. & Ido, Y. Acute regulation of fatty acid oxidation and AMP-activated protein kinase in human umbilical vein endothelial cells. Circ. Res. 88, 1276–1282 (2001)

    CAS  PubMed  Google Scholar 

  26. Schug, Z. T., Frezza, C., Galbraith, L. C. & Gottlieb, E. The music of lipids: how lipid composition orchestrates cellular behaviour. Acta Oncol. 51, 301–310 (2012)Illustrates the importance of lipid composition on mitochondrial structure, dynamics and bioenergetics in relation to cellular function.

    CAS  PubMed  Google Scholar 

  27. Fang, L. et al. Control of angiogenesis by AIBP-mediated cholesterol efflux. Nature 498, 118–122 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Avraham-Davidi, I. et al. ApoB-containing lipoproteins regulate angiogenesis by modulating expression of VEGF receptor 1. Nature Med. 18, 967–973 (2012)

    CAS  PubMed  Google Scholar 

  29. Seguin, F. et al. The fatty acid synthase inhibitor orlistat reduces experimental metastases and angiogenesis in B16–F10 melanomas. Br. J. Cancer 107, 977–987 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Merchan, J. R. et al. Antiangiogenic activity of 2-deoxy-d-glucose. PLoS ONE 5, e13699 (2010)

    ADS  PubMed  PubMed Central  Google Scholar 

  31. Koziel, A., Woyda-Ploszczyca, A., Kicinska, A. & Jarmuszkiewicz, W. The influence of high glucose on the aerobic metabolism of endothelial EA.hy926 cells. Pflugers Arch. 464, 657–669 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Brandes, R. P., Weissmann, N. & Schroder, K. Redox-mediated signal transduction by cardiovascular Nox NADPH oxidases. J. Mol. Cell. Cardiol. 73, 70–79 (2014)

    CAS  PubMed  Google Scholar 

  33. Du, X. et al. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J. Clin. Invest. 112, 1049–1057 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tang, W. H., Martin, K. A. & Hwa, J. Aldose reductase, oxidative stress, and diabetic mellitus. Front Pharmacol 3, 87 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Manigrasso, M. B., Juranek, J., Ramasamy, R. & Schmidt, A. M. Unlocking the biology of RAGE in diabetic microvascular complications. Trends Endocrinol. Metab. 25, 15–22 (2014)

    CAS  PubMed  Google Scholar 

  36. Liu, J. et al. Aldolase B knockdown prevents high glucose-induced methylglyoxal overproduction and cellular dysfunction in endothelial cells. PLoS ONE 7, e41495 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sena, C. M. et al. Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacol. Res. 65, 497–506 (2012)

    CAS  PubMed  Google Scholar 

  38. Forstermann, U. & Sessa, W. C. Nitric oxide synthases: regulation and function. Eur. Heart J. 33, 829–837 (2012)

    PubMed  Google Scholar 

  39. Beleznai, T. & Bagi, Z. Activation of hexosamine pathway impairs nitric oxide (NO)-dependent arteriolar dilations by increased protein O-GlcNAcylation. Vascul. Pharmacol. 56, 115–121 (2012)

    CAS  PubMed  Google Scholar 

  40. Warren, C. M., Ziyad, S., Briot, A., Der, A. & Iruela-Arispe, M. L. A ligand-independent VEGFR2 signaling pathway limits angiogenic responses in diabetes. Sci. Signal. 7, ra1 (2014)Mechanistic evidence of the anti-angiogenic effect of high glucose and ROS in diabetes.

    PubMed  PubMed Central  Google Scholar 

  41. Hill, M. F. Emerging role for antioxidant therapy in protection against diabetic cardiac complications: experimental and clinical evidence for utilization of classic and new antioxidants. Curr. Cardiol. Rev. 4, 259–268 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Shah, G. N. et al. Pharmacological inhibition of mitochondrial carbonic anhydrases protects mouse cerebral pericytes from high glucose-induced oxidative stress and apoptosis. J. Pharmacol. Exp. Ther. 344, 637–645 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Luo, B., Soesanto, Y. & McClain, D. A. Protein modification by O-linked GlcNAc reduces angiogenesis by inhibiting Akt activity in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 28, 651–657 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dluhy, R. G. & McMahon, G. T. Intensive glycemic control in the ACCORD and ADVANCE trials. N. Engl. J. Med. 358, 2630–2633 (2008)

    CAS  PubMed  Google Scholar 

  45. Lemons, J. M. et al. Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol. 8, e1000514 (2010)Provides the first comprehensive description of the major metabolic differences between quiescent and proliferating fibroblasts.

    PubMed  PubMed Central  Google Scholar 

  46. Pavlides, S. et al. Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxid. Redox Signal. 16, 1264–1284 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lisanti, M. P. et al. Understanding the “lethal” drivers of tumor-stroma co-evolution: emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment. Cancer Biol. Ther. 10, 537–542 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chaudhri, V. K. et al. Metabolic alterations in lung cancer-associated fibroblasts correlated with increased glycolytic metabolism of the tumor. Mol. Cancer Res. 11, 579–592 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Santolla, M. F. et al. G protein-coupled estrogen receptor mediates the up-regulation of fatty acid synthase induced by 17β-estradiol in cancer cells and cancer-associated fibroblasts. J. Biol. Chem. 287, 43234–43245 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gajewski, T. F., Schreiber, H. & Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. Nature Immunol. 14, 1014–1022 (2013)

    CAS  Google Scholar 

  51. Eheim, A., Medrikova, D. & Herzig, S. Immune cells and metabolic dysfunction. Semin. Immunopathol. 36, 13–25 (2014)

    CAS  PubMed  Google Scholar 

  52. Jameson, S. C. & Masopust, D. Diversity in T cell memory: an embarrassment of riches. Immunity 31, 859–871 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wahl, D. R., Byersdorfer, C. A., Ferrara, J. L., Opipari, A. W., Jr & Glick, G. D. Distinct metabolic programs in activated T cells: opportunities for selective immunomodulation. Immunol. Rev. 249, 104–115 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  54. MacIver, N. J., Michalek, R. D. & Rathmell, J. C. Metabolic regulation of T lymphocytes. Annu. Rev. Immunol. 31, 259–283 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Pearce, E. L., Poffenberger, M. C., Chang, C. H. & Jones, R. G. Fueling immunity: insights into metabolism and lymphocyte function. Science 342, 1242454 (2013)Refs 50-55 highlight emerging concepts of metabolism and its importance in T-cell function and development.

    PubMed  PubMed Central  Google Scholar 

  56. Jacobs, S. R. et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J. Immunol. 180, 4476–4486 (2008)

    CAS  PubMed  Google Scholar 

  57. Kamiński, M. M. et al. T cell activation is driven by an ADP-dependent glucokinase linking enhanced glycolysis with mitochondrial reactive oxygen species generation. Cell Rep 2, 1300–1315 (2012)

    PubMed  Google Scholar 

  58. Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011)Study describing the Myc-dependent global metabolic transcriptome driving metabolic reprogramming in activated T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. MacIver, N. J. et al. The liver kinase B1 is a central regulator of T cell development, activation, and metabolism. J. Immunol. 187, 4187–4198 (2011)

    CAS  PubMed  Google Scholar 

  60. Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013)Demonstrates translational control of T-cell activation through GAPDH binding to IFN-γ mRNA.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cham, C. M., Driessens, G., O’Keefe, J. P. & Gajewski, T. F. Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells. Eur. J. Immunol. 38, 2438–2450 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sena, L. A. et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Metallo, C. M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380–384 (2012)Shows the importance of reductive carboxylation of α-KG to produce acetyl-CoA for de novo lipid synthesis.

    ADS  CAS  Google Scholar 

  64. Wise, D. R. et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc. Natl Acad. Sci. USA 108, 19611–19616 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Robichaud, P. P., Boulay, K., Munganyiki, J. E. & Surette, M. E. Fatty acid remodeling in cellular glycerophospholipids following the activation of human T cells. J. Lipid Res. 54, 2665–2677 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011)

    CAS  PubMed  Google Scholar 

  68. Carr, E. L. et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol. 185, 1037–1044 (2010)

    CAS  PubMed  Google Scholar 

  69. Wang, R. & Green, D. R. Metabolic checkpoints in activated T cells. Nature Immunol. 13, 907–915 (2012)Summarizes metabolic requirements for T-cell activation.

    CAS  Google Scholar 

  70. Sundrud, M. S. et al. Halofuginone inhibits TH17 cell differentiation by activating the amino acid starvation response. Science 324, 1334–1338 (2009)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. van der Windt, G. J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012)

    CAS  PubMed  Google Scholar 

  72. Byersdorfer, C. A. et al. Effector T cells require fatty acid metabolism during murine graft-versus-host disease. Blood 122, 3230–3237 (2013)Shows the ability of T eff to adopt a different metabolic phenotype inflicted by external cues.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Mantovani, A., Biswas, S. K., Galdiero, M. R., Sica, A. & Locati, M. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 229, 176–185 (2013)

    CAS  PubMed  Google Scholar 

  74. Rodríguez-Prados, J. C. et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J. Immunol. 185, 605–614 (2010)

    PubMed  Google Scholar 

  75. Nizet, V. & Johnson, R. S. Interdependence of hypoxic and innate immune responses. Nature Rev. Immunol. 9, 609–617 (2009)

    CAS  Google Scholar 

  76. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013)Identification of a crucial role for succinate in innate immune signalling, through enhancement of IL-1β production during inflammation.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Michelucci, A. et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl Acad. Sci. USA 110, 7820–7825 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hall, C. J. et al. Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating β-oxidation-dependent mitochondrial ROS production. Cell Metab. 18, 265–278 (2013)

    CAS  PubMed  Google Scholar 

  79. O'Neill, L. A. A critical role for citrate metabolism in LPS signalling. Biochem. J. 438, e5–e6 (2011)

    CAS  PubMed  Google Scholar 

  80. Ecker, J. et al. Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes. Proc. Natl Acad. Sci. USA 107, 7817–7822 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vats, D. et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab. 4, 13–24 (2006)

    MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  82. O'Neill, L. A. & Hardie, D. G. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493, 346–355 (2013)

    ADS  CAS  PubMed  Google Scholar 

  83. Sene, A. et al. Impaired cholesterol efflux in senescent macrophages promotes age-related macular degeneration. Cell Metab. 17, 549–561 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Haschemi, A. et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 15, 813–826 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Biswas, S. K. & Mantovani, A. Orchestration of metabolism by macrophages. Cell Metab. 15, 432–437 (2012)An overview of the metabolic adaptations underlying macrophage plasticity and polarization and the critical use of metabolism in their function.

    CAS  PubMed  Google Scholar 

  86. Mills, C. D. M1 and M2 macrophages: oracles of health and disease. Crit. Rev. Immunol. 32, 463–488 (2012)

    CAS  PubMed  Google Scholar 

  87. Popovic, P. J., Zeh, H. J., III & Ochoa, J. B. Arginine and immunity. J. Nutr. 137, 1681S–1686S (2007)

    CAS  PubMed  Google Scholar 

  88. Sukumar, M. et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 123, 4479–4488 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013)

    ADS  CAS  PubMed  Google Scholar 

  91. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013)

    ADS  CAS  PubMed  Google Scholar 

  92. Sinclair, L. V. et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nature Immunol. 14, 500–508 (2013)

    CAS  Google Scholar 

  93. Telang, S. et al. Small molecule inhibition of 6-phosphofructo-2-kinase suppresses t cell activation. J. Transl. Med. 10, 95 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Clem, B. et al. Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol. Cancer Ther. 7, 110–120 (2008)

    CAS  PubMed  Google Scholar 

  95. Obrosova, I. G. & Kador, P. F. Aldose reductase/polyol inhibitors for diabetic retinopathy. Curr. Pharm. Biotechnol. 12, 373–385 (2011)

    CAS  PubMed  Google Scholar 

  96. Hotta, N., Kawamori, R., Fukuda, M. & Shigeta, Y. Aldose Reductase Inhibitor-Diabetes Complications Trial Study Group. Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on progression of diabetic neuropathy and other microvascular complications: multivariate epidemiological analysis based on patient background factors and severity of diabetic neuropathy. Diabet. Med. 29, 1529–1533 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  97. De Saedeleer, C. J. et al. Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells. PLoS ONE 7, e46571 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Végran, F., Boidot, R., Michiels, C., Sonveaux, P. & Feron, O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 71, 2550–2560 (2011)

    PubMed  Google Scholar 

  99. Ruan, G. X. & Kazlauskas, A. Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3-kinase/Akt and promote angiogenesis. J. Biol. Chem. 288, 21161–21172 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wei, X. et al. De novo lipogenesis maintains vascular homeostasis through endothelial nitric-oxide synthase (eNOS) palmitoylation. J. Biol. Chem. 286, 2933–2945 (2011)

    CAS  PubMed  Google Scholar 

  101. Majmundar, A. J., Wong, W. J. & Simon, M. C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40, 294–309 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Becker, J. C., Andersen, M. H., Schrama, D. & Thor Straten, P. Immune-suppressive properties of the tumor microenvironment. Cancer Immunol. Immunother. 62, 1137–1148 (2013)

    CAS  PubMed  Google Scholar 

  103. Yan, Z., Garg, S. K., Kipnis, J. & Banerjee, R. Extracellular redox modulation by regulatory T cells. Nature Chem. Biol. 5, 721–723 (2009)

    CAS  Google Scholar 

  104. Yamanishi, S., Katsumura, K., Kobayashi, T. & Puro, D. G. Extracellular lactate as a dynamic vasoactive signal in the rat retinal microvasculature. Am. J. Physiol. Heart Circ. Physiol. 290, H925–H934 (2006)

    CAS  PubMed  Google Scholar 

  105. Ohashi, T. et al. Dichloroacetate improves immune dysfunction caused by tumor-secreted lactic acid and increases antitumor immunoreactivity. Int. J. Cancer 133, 1107–1118 (2013)

    CAS  PubMed  Google Scholar 

  106. Nieman, K. M. et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Med. 17, 1498–1503 (2011)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supporting fellowships: FWO Fellowships (B.G., B.W.W., A.K.) and Marie Curie Fellowship (B.W.W.). Supporting grants: IUAP P7/03, long-term structural funding - Methusalem funding by the Flemish Government, FWO grants, AXA Research Fund and ERC Advanced Research Grant. We thank P. Agostinis, M. Baes, K. De Bock, S. Fendt, P. Fraisl, B. Lambrecht, A. Liston, M. Mazzone, J. Rathmell, J. Van Ginderachter, P. Verstreken and others for suggestions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of this manuscript.

Corresponding author

Correspondence to Peter Carmeliet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghesquière, B., Wong, B., Kuchnio, A. et al. Metabolism of stromal and immune cells in health and disease. Nature 511, 167–176 (2014). https://doi.org/10.1038/nature13312

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13312

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer