Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Urinary biomarkers trefoil factor 3 and albumin enable early detection of kidney tubular injury

Abstract

The capacities of urinary trefoil factor 3 (TFF3) and urinary albumin to detect acute renal tubular injury have never been evaluated with sufficient statistical rigor to permit their use in regulated drug development instead of the current preclinical biomarkers serum creatinine (SCr) and blood urea nitrogen (BUN). Working with rats, we found that urinary TFF3 protein levels were markedly reduced, and urinary albumin were markedly increased in response to renal tubular injury. Urinary TFF3 levels did not respond to nonrenal toxicants, and urinary albumin faithfully reflected alterations in renal function. In situ hybridization localized TFF3 expression in tubules of the outer stripe of the outer medulla. Albumin outperformed either SCr or BUN for detecting kidney tubule injury and TFF3 augmented the potential of BUN and SCr to detect kidney damage. Use of urinary TFF3 and albumin will enable more sensitive and robust diagnosis of acute renal tubular injury than traditional biomarkers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cisplatin kidney toxicity study.
Figure 2: Gentamicin kidney toxicity study.
Figure 3: Carbapenem A kidney toxicity study.
Figure 4: Genipin liver toxicity study and isoproterenol muscle and heart toxicity study.
Figure 5: ROC curves for TFF3 and for albumin compared to those for BUN, and creatinine.
Figure 6: Determination of the renal source of Tff3 mRNA by in situ hybridization.

Similar content being viewed by others

References

  1. Devarajan, P. Emerging biomarkers of acute kidney injury. Acute Kidney Injury 156, 203–212 (2007).

    Article  Google Scholar 

  2. Bonventre, J.V., Vaidya, V.S., Schmouder, R., Feig, P. & Dieterle, F. Next-generation biomarkers for detecting kidney toxicity. Nat. Biotechnol. 28, 436–440 (2010).

    Article  CAS  Google Scholar 

  3. Madsen, J., Nielsen, O., Tornoe, I., Thim, L. & Holmskov, U. Tissue localization of human trefoil factors 1, 2, and 3. J. Histochem. Cytochem. 55, 505–513 (2007).

    Article  CAS  Google Scholar 

  4. Taupin, D. & Podolsky, D.K. Trefoil factors: initiators of mucosal healing. Nat. Rev. Mol. Cell Biol. 4, 721–732 (2003).

    Article  CAS  Google Scholar 

  5. Kinoshita, K., Taupin, D.R., Itoh, H. & Podolsky, D.K. Distinct pathways of cell migration and antiapoptotic response to epithelial injury: Structure-function analysis of human intestinal trefoil factor. Mol. Cell. Biol. 20, 4680–4690 (2000).

    Article  CAS  Google Scholar 

  6. LeSimple, P. et al. Trefoil factor family 3 peptide promotes human airway epithelial ciliated cell differentiation. Am. J. Respir. Cell Mol. Biol. 36, 296–303 (2007).

    Article  CAS  Google Scholar 

  7. Suemori, S., Lynchdevaney, K. & Podolsky, D.K. Identification and characterization of rat intestinal trefoil factor—tissue-specific and cell-specific member of the trefoil protein family. Proc. Natl. Acad. Sci. USA 88, 11017–11021 (1991).

    Article  CAS  Google Scholar 

  8. Chinery, R., Poulsom, R., Elia, G., Hanby, A.M. & Wright, N.A. Expression and purification of a trefoil peptide motif in A beta-galactosidase fusion protein and its use to search for trefoil-binding sites. Eur. J. Biochem. 212, 557–563 (1993).

    Article  CAS  Google Scholar 

  9. Debata, P.R., Panda, H. & Supakar, P.C. Altered expression of trefoil factor 3 and cathepsin L gene in rat kidney during aging. Biogerontology 8, 25–30 (2007).

    Article  CAS  Google Scholar 

  10. Venkat, K.K. Proteinuria and microalbuminuria in adults: significance, evaluation, and treatment. South. Med. J. 97, 969–979 (2004).

    Article  CAS  Google Scholar 

  11. Christensen, E., Birn, H., Rippe, B. & Maunsbach, A.B. Controversies in nephrology: renal albumin handling, facts, and artifacts!. Kidney Int. 72, 1192–1194 (2007).

    Article  CAS  Google Scholar 

  12. Tugay, S., Bircan, Z., Caglayan, C., Arisoy, A.E. & Gokalp, A.S. Acute effects of gentamicin on glomerular and tubular functions in preterm neonates. Pediatr. Nephrol. 21, 1389–1392 (2006).

    Article  Google Scholar 

  13. Koch Nogueira, P.C. et al. Long-term nephrotoxicity of cisplatin, ifosfamide, and methotrexate in osteosarcoma. Pediatr. Nephrol. 12, 572–575 (1998).

    Article  CAS  Google Scholar 

  14. Kern, W. et al. Microalbuminuria during cisplatin therapy: relation with pharmacokinetics and implications for nephroprotection. Anticancer Res. 20, 3679–3688 (2000).

    CAS  PubMed  Google Scholar 

  15. Sistare, F. et al. Towards consensus practices to qualify safety biomarkers for use in early drug development. Nat. Biotechnol. 28, 446–454 (2010).

    Article  CAS  Google Scholar 

  16. Safirstein, R., Winston, J., Moel, D., Dikman, S. & Guttenplan, J. Cisplatin nephrotoxicity—insights into mechanism. Int. J. Androl. 10, 325–346 (1987).

    Article  CAS  Google Scholar 

  17. Winston, J.A. & Safirstein, R. Reduced renal blood-flow in early cisplatin-induced acute renal-failure in the rat. Am. J. Physiol. 249, F490–F496 (1985).

    Article  CAS  Google Scholar 

  18. Martinez-Salgado, C., Lopez-Hernandez, F.J. & Lopez-Novoa, J.M. Glomerular nephrotoxicity of aminoglycosides. Toxicol. Appl. Pharmacol. 223, 86–98 (2007).

    Article  CAS  Google Scholar 

  19. Feldman, S., Wang, M.Y. & Kaloyanides, G.J. Aminoglycosides induce a phospholipidosis in the renal cortex of the rat—an early manifestation of nephrotoxicity. J. Pharmacol. Exp. Ther. 220, 514–520 (1982).

    CAS  PubMed  Google Scholar 

  20. Tune, B.M. & Hsu, C.Y. Mechanisms of beta-lactam antibiotic nephrotoxicity. Toxicol. Lett. 53, 81–86 (1990).

    Article  CAS  Google Scholar 

  21. Tune, B.M. Renal tubular transport and nephrotoxicity of beta-lactam antibiotics—structure-activity-relationships. Miner. Electrolyte Metab. 20, 221–231 (1994).

    CAS  PubMed  Google Scholar 

  22. Yamano, T. et al. Hepatotoxicity of geniposide in rats. Am. J. Pathol. 74, 575–519 (1974).

    Google Scholar 

  23. York, M. et al. Characterization of troponin responses in isoproterenol-induced cardiac injury in the Hanover Wistar rat. Toxicol. Pathol. 35, 606–617 (2007).

    Article  CAS  Google Scholar 

  24. Harrell, F.E., Lee, K.L., Califf, R.M., Pryor, D.B. & Rosati, R.A. Regression modeling strategies for improved prognostic prediction. Stat. Med. 3, 143–152 (1984).

    Article  Google Scholar 

  25. Ozer, J. et al. A panel of urinary biomarkers to monitor reversibility of renal injury and a serum marker with improved potential to assess renal function. Nat. Biotechnol. 28, 486–494 (2010).

    Article  CAS  Google Scholar 

  26. Brooks, D.P., Drutz, D.J. & Ruffolo, R.R. Prevention and complete reversal of cyclosporine a-induced renal vasoconstriction and nephrotoxicity in the rat by fenoldopam. J. Pharmacol. Exp. Ther. 254, 375–379 (1990).

    CAS  PubMed  Google Scholar 

  27. Goldman, L. & Bennett, C. . Cecil Texbook of Medicine, edn. 21 (W.B. Saunders, 2000).

  28. Loeb, F.W. & Quimby, W.F.P. Clinical Chemistry of Laboratory Animals, edn. 2 (CRC, 1999).

  29. Schwab, S.J., Christensen, R.L., Dougherty, K. & Klahr, S. Quantitation of proteinuria by the use of protein-to-creatinine ratios in single urine samples. Arch. Intern. Med. 147, 943–944 (1987).

    Article  CAS  Google Scholar 

  30. Ginsberg, J.M., Chang, B.S., Matarese, R.A. & Garella, S. Use of single voided urine samples to estimate quantitative proteinuria. N. Engl. J. Med. 309, 1543–1546 (1983).

    Article  CAS  Google Scholar 

  31. Ramesh, G. & Reeves, W.B. Inflammatory cytokines in acute renal failure. Kidney Int. 66, S56–S61 (2004).

    Article  Google Scholar 

  32. Zhang, B., Ramesh, G., Norbury, C.C. & Reeves, W.B. Cisplatin-induced nephrotoxicity is mediated by tumor necrosis factor-alpha produced by renal parenchymal cells. Kidney Int. 72, 37–44 (2007).

    Article  CAS  Google Scholar 

  33. Dossinger, V., Kayademir, T., Blin, N. & Gott, P. Down-regulation of TFF expression in gastrointestinal cell lines by cytokines and nuclear factors. Cell. Physiol. Biochem. 12, 197–206 (2002).

    Article  CAS  Google Scholar 

  34. Loncar, M.B. et al. Tumour necrosis factor alpha and nuclear factor kappa B inhibit transcription of human TFF3 encoding a gastrointestinal healing peptide. Gut 52, 1297–1303 (2003).

    Article  CAS  Google Scholar 

  35. Sarafidis, P.A. Proteinuria: natural course, prognostic implications and therapeutic considerations. Minerva Med. 98, 693–711 (2007).

    CAS  PubMed  Google Scholar 

  36. Barker, E.A. & Smuckler, E.A. Nonhepatic thioacetamide injury. II. The morphologic features of proximal renal tubular injury. Hepatogastroenterology 54, 1339–1344 (2007).

    Google Scholar 

  37. Boroushaki, M. Development of resistance against hexachlorobutadiene in the proximal tubules of young male rat. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 136, 367–375 (2003).

    Article  CAS  Google Scholar 

  38. Ansari, N.H. & Rajaraman, S. Allopurinol-induced nephrotoxicity - protection by the antioxidant, butylated hydroxytoluene. Res. Commun. Chem. Pathol. Pharmacol. 75, 221–229 (1992).

    CAS  PubMed  Google Scholar 

  39. Nguyen, T.K.T., Obatomi, D.K. & Bach, P.H. Increased urinary uronic acid excretion in experimentally-induced renal papillary necrosis in rats. Ren. Fail. 23, 31–42 (2001).

    Article  CAS  Google Scholar 

  40. Williams, R.E. & Lock, E.A. D-serine-induced nephrotoxicity: possible interaction with tyrosine metabolism. Toxicology 201, 231–238 (2004).

    Article  CAS  Google Scholar 

  41. Halman, J., Miller, J., Fowler, J.S.L. & Price, R.G. Renal toxicity of propyleneimine—assessment by noninvasive techniques in the rat. Toxicology 41, 43–59 (1986).

    Article  CAS  Google Scholar 

  42. Zoja, C., Perico, N. & Remuzzi, G. Abnormalities in arachidonic-acid metabolites in nephrotoxic glomerular injury. Toxicol. Lett. 46, 65–75 (1989).

    Article  CAS  Google Scholar 

  43. Sirica, A.E. Biliary proliferation and adaptation in furan-induced rat liver injury and carcinogenesis. Toxicol. Pathol. 24, 90–99 (1996).

    Article  CAS  Google Scholar 

  44. Kaufmann, P. et al. Toxicity of statins on rat skeletal muscle mitochondria. Cell. Mol. Life Sci. 63, 2415–2425 (2006).

    Article  CAS  Google Scholar 

  45. Masuda, Y. Learning toxicology from carbon tetrachloride-induced hepatotoxicity. Yakugaku Zasshi 126, 885–899 (2006).

    Article  CAS  Google Scholar 

  46. Mehendale, H.M. Mechanism of the lethal interaction of chlordecone and CCl4 at non-toxic doses. Toxicol. Lett. 49, 215–241 (1989).

    Article  CAS  Google Scholar 

  47. Thulesen, J., Jorgensen, P.E., Torffvit, O., Nexo, E. & Poulsen, S.S. Urinary excretion of epidermal growth factor and Tamm-Horsfall protein in three rat models with increased renal excretion of urine. Regul. Pept. 72, 179–186 (1997).

    Article  CAS  Google Scholar 

  48. Croxatto, H.R., Huidrobro, R., Rojas, M., Roblero, J. & Albertini, R. Effect of water sodium overloading and diuretics upon urinary kallikrein. Agents Actions 6, 420 (1976).

    Article  Google Scholar 

  49. Baracho, N.C.V., Simoes-e-Silva, Khosla, M.C. & Santos, R.A.S. Effect of selective angiotensin antagonists on the antidiuresis produced by angiotensin-(1–7) in water-loaded rats. Braz. J. Med. Biol. Res. 31, 1221–1227 (1998).

    Article  CAS  Google Scholar 

  50. Mattes, W.B. & Walker, E.G. Translational toxicology and the work of the predictive safety testing consortium. Clin. Pharmacol. Ther. 85, 327–330 (2009).

    Article  CAS  Google Scholar 

  51. Ky, B. & Shughrue, P.J. Methods to enhance signal using isotopic in situ hybridization. J. Histochem. Cytochem. 50, 1031–1037 (2002).

    Article  CAS  Google Scholar 

  52. DeLong, E.R., Delong, D.M. & Clarkepearson, D.I. Comparing the areas under 2 or more correlated receiver operating characteristic curves a nonparametric approach. Biometrics 44, 837–845 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the participants in the Nephrotoxicity Predictive Safety Testing Consortium and the Merck Kidney Biomarker Working Group. We thank J. Mardi, J. Flor, A. Smith and D. Harner for photographic and editorial assistance in assembling the histopathology supplement.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y., D.H., J.S.O., P.S., S.P.T., W.B., A.G.A., F.D.S. and D.L.G. designed and analyzed experiments. Y.Y., H.J., S.V., D.J.F., H.C., M.S., J.S., N.M., S.P.T. and S.S. performed experiments. Y.Y., D.H., J.S.O., P.S., A.G.A., D.T., F.D.S. and D.L.G. wrote and edited the manuscript.

Corresponding author

Correspondence to David L Gerhold.

Ethics declarations

Competing interests

All authors are employees of Merck, with the exception of J.S., who works for Charles River Laboaratories.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3, Supplementary Fig. 1, Supplementary Data, Supplementary Assay Validation and Supplementary Results (PDF 34182 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Jin, H., Holder, D. et al. Urinary biomarkers trefoil factor 3 and albumin enable early detection of kidney tubular injury. Nat Biotechnol 28, 470–477 (2010). https://doi.org/10.1038/nbt.1624

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1624

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing