Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Epigenetic modifications and human disease

Abstract

Epigenetics is one of the most rapidly expanding fields in biology. The recent characterization of a human DNA methylome at single nucleotide resolution, the discovery of the CpG island shores, the finding of new histone variants and modifications, and the unveiling of genome-wide nucleosome positioning maps highlight the accelerating speed of discovery over the past two years. Increasing interest in epigenetics has been accompanied by technological breakthroughs that now make it possible to undertake large-scale epigenomic studies. These allow the mapping of epigenetic marks, such as DNA methylation, histone modifications and nucleosome positioning, which are critical for regulating gene and noncoding RNA expression. In turn, we are learning how aberrant placement of these epigenetic marks and mutations in the epigenetic machinery is involved in disease. Thus, a comprehensive understanding of epigenetic mechanisms, their interactions and alterations in health and disease, has become a priority in biomedical research.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA methylation patterns.
Figure 2: Epigenetic machinery and interplay among epigenetic factors.
Figure 3: Histone modifications.
Figure 4: Nucleosome positioning patterns.

References

  1. Esteller, M. Epigenetics in evolution and disease. Lancet 372, S90–S96 (2008).

    Google Scholar 

  2. Waddington, C.H. Introduction to Modern Genetics (Macmillan, 1939).

    Google Scholar 

  3. Rideout, W.M. III, Eggan, K. & Jaenisch, R. Nuclear cloning and epigenetic reprogramming of the genome. Science 293, 1093–1098 (2001).

    CAS  PubMed  Google Scholar 

  4. Fraga, M.F. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. USA 102, 10604–10609 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaminsky, Z.A. et al. DNA methylation profiles in monozygotic and dizygotic twins. Nat. Genet. 41, 240–245 (2009).

    CAS  PubMed  Google Scholar 

  6. Javierre, B.M. et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res. 20, 170–179 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chi, A.S. & Bernstein, B.E. Developmental biology. Pluripotent chromatin state. Science 323, 220–221 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Meissner, A. Epigenetic modifications in pluripotent and differentiated cells. Nat. Biotechnol. 28, 1079–1088 (2010).

    CAS  PubMed  Google Scholar 

  10. Esteller, M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21, 5427–5440 (2002).

    CAS  PubMed  Google Scholar 

  11. Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet. 8, 286–298 (2007).

    CAS  PubMed  Google Scholar 

  12. Straussman, R. et al. Developmental programming of CpG island methylation profiles in the human genome. Nat. Struct. Mol. Biol. 16, 564–571 (2009).

    CAS  PubMed  Google Scholar 

  13. Kacem, S. & Feil, R. Chromatin mechanisms in genomic imprinting. Mamm. Genome 20, 544–556 (2009).

    CAS  PubMed  Google Scholar 

  14. Reik, W. & Lewis, A. Co-evolution of X-chromosome inactivation and imprinting in mammals. Nat. Rev. Genet. 6, 403–410 (2005).

    CAS  PubMed  Google Scholar 

  15. Esteller, M. Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum. Mol. Genet. 16 Spec No 1, R50–R59 (2007).

    CAS  PubMed  Google Scholar 

  16. Lopez-Serra, L. & Esteller, M. Proteins that bind methylated DNA and human cancer: reading the wrong words. Br. J. Cancer 98, 1881–1885 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuroda, A. et al. Insulin gene expression is regulated by DNA methylation. PLoS ONE 4, e6953 (2009).

    PubMed  PubMed Central  Google Scholar 

  18. Thomson, J.P. et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464, 1082–1086 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Irizarry, R.A. et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41, 178–186 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Doi, A. et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet. 41, 1350–1353 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ji, H. et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467, 338–342 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hellman, A. & Chess, A. Gene body-specific methylation on the active X chromosome. Science 315, 1141–1143 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Zilberman, D., Gehring, M., Tran, R.K., Ballinger, T. & Henikoff, S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat. Genet. 39, 61–69 (2007).

    CAS  PubMed  Google Scholar 

  24. Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat. Genet. 38, 1341–1347 (2006).

    CAS  PubMed  Google Scholar 

  25. Espada, J. et al. Epigenetic disruption of ribosomal RNA genes and nucleolar architecture in DNA methyltransferase 1 (Dnmt1) deficient cells. Nucleic Acids Res. 35, 2191–2198 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Horike, S., Cai, S., Miyano, M., Cheng, J.F. & Kohwi-Shigematsu, T. Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat. Genet. 37, 31–40 (2005).

    CAS  PubMed  Google Scholar 

  27. van Steensel, B. & Dekker, J. Genomics tools for unraveling chromosome architecture. Nat. Biotechnol. 28, 1089–1095 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Laurent, L. et al. Dynamic changes in the human methylome during differentiation. Genome Res. 20, 320–331 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Berman, B.P., Weisenberger, D.J. & Laird, P.W. Locking in on the human methylome. Nat. Biotechnol. 27, 341–342 (2009).

    CAS  PubMed  Google Scholar 

  32. Weisenberger, D.J. et al. DNA methylation analysis by digital bisulfite genomic sequencing and digital MethyLight. Nucleic Acids Res. 36, 4689–4698 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Down, T.A. et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat. Biotechnol. 26, 779–785 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Laird, P.W. Principles and challenges of genome-wide DNA methylation analysis. Nat. Rev. Genet. 11, 191–203 (2010).

    CAS  PubMed  Google Scholar 

  35. Bourc'his, D., Xu, G.L., Lin, C.S., Bollman, B. & Bestor, T.H. Dnmt3L and the establishment of maternal genomic imprints. Science 294, 2536–2539 (2001).

    CAS  PubMed  Google Scholar 

  36. Chen, Z.X., Mann, J.R., Hsieh, C.L., Riggs, A.D. & Chedin, F. Physical and functional interactions between the human DNMT3L protein and members of the de novo methyltransferase family. J. Cell. Biochem. 95, 902–917 (2005).

    CAS  PubMed  Google Scholar 

  37. Holz-Schietinger, C. & Reich, N.O. The inherent processivity of the human de novo DNA methyltransferase 3A (DNMT3A) is enhanced by DNMT3L. J. Biol. Chem. 285, 29091–29100 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chuang, L.S. et al. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277, 1996–2000 (1997).

    CAS  PubMed  Google Scholar 

  39. Bostick, M. et al. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317, 1760–1764 (2007).

    CAS  PubMed  Google Scholar 

  40. Jones, P.A. & Liang, G. Rethinking how DNA methylation patterns are maintained. Nat. Rev. Genet. 10, 805–811 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jeong, S. et al. Selective anchoring of DNA methyltransferases 3A and 3B to nucleosomes containing methylated DNA. Mol. Cell. Biol. 29, 5366–5376 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Goll, M.G. et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311, 395–398 (2006).

    CAS  PubMed  Google Scholar 

  43. Ooi, S.K. et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714–717 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tachibana, M., Matsumura, Y., Fukuda, M., Kimura, H. & Shinkai, Y. G9a/GLP complexes independently mediate H3K9 and DNA methylation to silence transcription. EMBO J. 27, 2681–2690 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao, Q. et al. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat. Struct. Mol. Biol. 16, 304–311 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Esteve, P.O. et al. Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc. Natl. Acad. Sci. USA 106, 5076–5081 (2009).

    PubMed  PubMed Central  Google Scholar 

  47. Wang, J. et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat. Genet. 41, 125–129 (2009).

    CAS  PubMed  Google Scholar 

  48. Mosher, R.A. & Melnyk, C.W. siRNAs and DNA methylation: seedy epigenetics. Trends Plant Sci. 15, 204–210 (2010).

    CAS  PubMed  Google Scholar 

  49. Matzke, M.A. & Birchler, J.A. RNAi-mediated pathways in the nucleus. Nat. Rev. Genet. 6, 24–35 (2005).

    CAS  PubMed  Google Scholar 

  50. Vrbsky, J. et al. siRNA-mediated methylation of Arabidopsis telomeres. PLoS Genet. 6, e1000986 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. Zaratiegui, M., Irvine, D.V. & Martienssen, R.A. Noncoding RNAs and gene silencing. Cell 128, 763–776 (2007).

    CAS  PubMed  Google Scholar 

  52. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    CAS  PubMed  Google Scholar 

  53. Daujat, S., Zeissler, U., Waldmann, T., Happel, N. & Schneider, R. HP1 binds specifically to Lys26-methylated histone H1.4, whereas simultaneous Ser27 phosphorylation blocks HP1 binding. J. Biol. Chem. 280, 38090–38095 (2005).

    CAS  PubMed  Google Scholar 

  54. Rando, O.J. & Chang, H.Y. Genome-wide views of chromatin structure. Annu. Rev. Biochem. 78, 245–271 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Huertas, D., Sendra, R. & Munoz, P. Chromatin dynamics coupled to DNA repair. Epigenetics 4, 31–42 (2009).

    CAS  PubMed  Google Scholar 

  56. Luco, R.F. et al. Regulation of alternative splicing by histone modifications. Science 327, 996–1000 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, B., Carey, M. & Workman, J.L. The role of chromatin during transcription. Cell 128, 707–719 (2007).

    CAS  PubMed  Google Scholar 

  58. Karlic, R., Chung, H.R., Lasserre, J., Vlahovicek, K. & Vingron, M. Histone modification levels are predictive for gene expression. Proc. Natl. Acad. Sci. USA 107, 2926–2931 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Moazed, D. Small RNAs in transcriptional gene silencing and genome defence. Nature 457, 413–420 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Grewal, S.I. & Jia, S. Heterochromatin revisited. Nat. Rev. Genet. 8, 35–46 (2007).

    CAS  PubMed  Google Scholar 

  61. Khalil, A.M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. USA 106, 11667–11672 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Chow, J. & Heard, E. X inactivation and the complexities of silencing a sex chromosome. Curr. Opin. Cell Biol. 21, 359–366 (2009).

    CAS  PubMed  Google Scholar 

  63. Agrelo, R. & Wutz, A. X inactivation and disease. Semin. Cell Dev. Biol. 21, 194–200 (2010).

    CAS  PubMed  Google Scholar 

  64. Rinn, J.L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Santos-Rosa, H. et al. Histone H3 tail clipping regulates gene expression. Nat. Struct. Mol. Biol. 16, 17–22 (2009).

    CAS  PubMed  Google Scholar 

  66. Wang, Z. et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 40, 897–903 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Duan, Q., Chen, H., Costa, M. & Dai, W. Phosphorylation of H3S10 blocks the access of H3K9 by specific antibodies and histone methyltransferase. Implication in regulating chromatin dynamics and epigenetic inheritance during mitosis. J. Biol. Chem. 283, 33585–33590 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Nakanishi, S. et al. Histone H2BK123 monoubiquitination is the critical determinant for H3K4 and H3K79 trimethylation by COMPASS and Dot1. J. Cell Biol. 186, 371–377 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ernst, J. & Kellis, M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat. Biotechnol. 28, 817–825 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mikkelsen, T.S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bernstein, B.E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS  PubMed  Google Scholar 

  72. Fuks, F. et al. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J. Biol. Chem. 278, 4035–4040 (2003).

    CAS  PubMed  Google Scholar 

  73. Bhaumik, S.R., Smith, E. & Shilatifard, A. Covalent modifications of histones during development and disease pathogenesis. Nat. Struct. Mol. Biol. 14, 1008–1016 (2007).

    CAS  PubMed  Google Scholar 

  74. Chang, B., Chen, Y., Zhao, Y. & Bruick, R.K. JMJD6 is a histone arginine demethylase. Science 318, 444–447 (2007).

    CAS  PubMed  Google Scholar 

  75. Chi, P., Allis, C.D. & Wang, G.G. Covalent histone modifications–miswritten, misinterpreted and mis-erased in human cancers. Nat. Rev. Cancer 10, 457–469 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, Z. et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138, 1019–1031 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Schones, D.E. et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 132, 887–898 (2008).

    CAS  PubMed  Google Scholar 

  78. Cairns, B.R. The logic of chromatin architecture and remodelling at promoters. Nature 461, 193–198 (2009).

    CAS  PubMed  Google Scholar 

  79. Chodavarapu, R.K. et al. Relationship between nucleosome positioning and DNA methylation. Nature 466, 388–392 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Getun, I.V., Wu, Z.K., Khalil, A.M. & Bois, P.R. Nucleosome occupancy landscape and dynamics at mouse recombination hotspots. EMBO Rep. 11, 555–560 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Zilberman, D., Coleman-Derr, D., Ballinger, T. & Henikoff, S. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456, 125–129 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Harikrishnan, K.N. et al. Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing. Nat. Genet. 37, 254–264 (2005).

    CAS  PubMed  Google Scholar 

  83. Wysocka, J. et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442, 86–90 (2006).

    CAS  PubMed  Google Scholar 

  84. Lal, A. et al. miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat. Struct. Mol. Biol. 16, 492–498 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Yoo, A.S., Staahl, B.T., Chen, L. & Crabtree, G.R. MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460, 642–646 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ho, L. & Crabtree, G.R. Chromatin remodelling during development. Nature 463, 474–484 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Reisman, D., Glaros, S. & Thompson, E.A. The SWI/SNF complex and cancer. Oncogene 28, 1653–1668 (2009).

    CAS  PubMed  Google Scholar 

  88. Clapier, C.R. & Cairns, B.R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009).

    CAS  PubMed  Google Scholar 

  89. Sharma, S., Kelly, T.K. & Jones, P.A. Epigenetics in cancer. Carcinogenesis 31, 27–36 (2009).

    PubMed  PubMed Central  Google Scholar 

  90. Goelz, S.E., Vogelstein, B., Hamilton, S.R. & Feinberg, A.P. Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 228, 187–190 (1985).

    CAS  PubMed  Google Scholar 

  91. Gaudet, F. et al. Induction of tumors in mice by genomic hypomethylation. Science 300, 489–492 (2003).

    CAS  PubMed  Google Scholar 

  92. Wilson, A.S., Power, B.E. & Molloy, P.L. DNA hypomethylation and human diseases. Biochim. Biophys. Acta 1775, 138–162 (2007).

    CAS  PubMed  Google Scholar 

  93. Futscher, B.W. et al. Aberrant methylation of the maspin promoter is an early event in human breast cancer. Neoplasia 6, 380–389 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Futscher, B.W. et al. Role for DNA methylation in the control of cell type specific maspin expression. Nat. Genet. 31, 175–179 (2002).

    CAS  PubMed  Google Scholar 

  95. Bettstetter, M. et al. Elevated nuclear maspin expression is associated with microsatellite instability and high tumour grade in colorectal cancer. J. Pathol. 205, 606–614 (2005).

    CAS  PubMed  Google Scholar 

  96. Ito, Y. et al. Somatically acquired hypomethylation of IGF2 in breast and colorectal cancer. Hum. Mol. Genet. 17, 2633–2643 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Li, M. et al. Sensitive digital quantification of DNA methylation in clinical samples. Nat. Biotechnol. 27, 858–863 (2009).

    PubMed  PubMed Central  Google Scholar 

  98. Kelly, T.K., De Carvalho, D.D. & Peter A Jones, P.A. Epigenetic modifications as therapeutic targets. Nat. Biotechnol. 28, 1069–1078 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Melo, S.A. et al. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat. Genet. 41, 365–370 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Saito, Y. et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9, 435–443 (2006).

    CAS  PubMed  Google Scholar 

  101. Lujambio, A. et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 67, 1424–1429 (2007).

    CAS  PubMed  Google Scholar 

  102. Lujambio, A. et al. A microRNA DNA methylation signature for human cancer metastasis. Proc. Natl. Acad. Sci. USA 105, 13556–13561 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Di Croce, L. et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295, 1079–1082 (2002).

    CAS  PubMed  Google Scholar 

  104. Frigola, J. et al. Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nat. Genet. 38, 540–549 (2006).

    CAS  PubMed  Google Scholar 

  105. Miremadi, A., Oestergaard, M.Z., Pharoah, P.D. & Caldas, C. Cancer genetics of epigenetic genes. Hum. Mol. Genet. 16 Spec No 1, R28–R49 (2007).

    CAS  PubMed  Google Scholar 

  106. Garzon, R. et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 113, 6411–6418 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Fraga, M.F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet. 37, 391–400 (2005).

    CAS  PubMed  Google Scholar 

  108. Zhu, P. et al. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 5, 455–463 (2004).

    CAS  PubMed  Google Scholar 

  109. Ropero, S. et al. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nat. Genet. 38, 566–569 (2006).

    CAS  PubMed  Google Scholar 

  110. Vaquero, A., Sternglanz, R. & Reinberg, D. NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs. Oncogene 26, 5505–5520 (2007).

    CAS  PubMed  Google Scholar 

  111. Noonan, E.J. et al. miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 28, 1714–1724 (2009).

    CAS  PubMed  Google Scholar 

  112. Moore, S.D. et al. Uterine leiomyomata with t(10;17) disrupt the histone acetyltransferase MORF. Cancer Res. 64, 5570–5577 (2004).

    CAS  PubMed  Google Scholar 

  113. Bryan, E.J. et al. Mutation analysis of EP300 in colon, breast and ovarian carcinomas. Int. J. Cancer 102, 137–141 (2002).

    CAS  PubMed  Google Scholar 

  114. Hamamoto, R. et al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat. Cell Biol. 6, 731–740 (2004).

    CAS  PubMed  Google Scholar 

  115. Kondo, Y. et al. Alterations of DNA methylation and histone modifications contribute to gene silencing in hepatocellular carcinomas. Hepatol. Res. 37, 974–983 (2007).

    CAS  PubMed  Google Scholar 

  116. Vire, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874 (2006).

    CAS  PubMed  Google Scholar 

  117. Dalgliesh, G.L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Gupta, R.A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Varambally, S. et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322, 1695–1699 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Berdasco, M. et al. Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. Proc. Natl. Acad. Sci. USA 106, 21830–21835 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Jones, B. et al. The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet. 4, e1000190 (2008).

    PubMed  PubMed Central  Google Scholar 

  122. Jacinto, F.V., Ballestar, E. & Esteller, M. Impaired recruitment of the histone methyltransferase DOT1L contributes to the incomplete reactivation of tumor suppressor genes upon DNA demethylation. Oncogene 28, 4212–4224 (2009).

    CAS  PubMed  Google Scholar 

  123. Krivtsov, A.V. et al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 14, 355–368 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang, P. et al. Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II. Mol. Cell. Biol. 29, 6074–6085 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Shi, Y. Histone lysine demethylases: emerging roles in development, physiology and disease. Nat. Rev. Genet. 8, 829–833 (2007).

    CAS  PubMed  Google Scholar 

  126. Dawson, M.A. et al. JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature 461, 819–822 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Medina, P.P. & Sanchez-Cespedes, M. Involvement of the chromatin-remodeling factor BRG1/SMARCA4 in human cancer. Epigenetics 3, 64–68 (2008).

    PubMed  Google Scholar 

  128. Naidu, S.R., Love, I.M., Imbalzano, A.N., Grossman, S.R. & Androphy, E.J. The SWI/SNF chromatin remodeling subunit BRG1 is a critical regulator of p53 necessary for proliferation of malignant cells. Oncogene 28, 2492–2501 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Roberts, C.W. & Orkin, S.H. The SWI/SNF complex–chromatin and cancer. Nat. Rev. Cancer 4, 133–142 (2004).

    CAS  PubMed  Google Scholar 

  130. Lin, J.C. et al. Role of nucleosomal occupancy in the epigenetic silencing of the MLH1 CpG island. Cancer Cell 12, 432–444 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Mulero-Navarro, S. & Esteller, M. Chromatin remodeling factor CHD5 is silenced by promoter CpG island hypermethylation in human cancer. Epigenetics 3, 210–215 (2008).

    PubMed  Google Scholar 

  132. Sporn, J.C. et al. Histone macroH2A isoforms predict the risk of lung cancer recurrence. Oncogene 28, 3423–3428 (2009).

    CAS  PubMed  Google Scholar 

  133. Gibbs, J.R. et al. Abundant quantitative trait Loci exist for DNA methylation and gene expression in human brain. PLoS Genet. 6, e1000952 (2010).

    PubMed  PubMed Central  Google Scholar 

  134. Wynder, C., Hakimi, M.A., Epstein, J.A., Shilatifard, A. & Shiekhattar, R. Recruitment of MLL by HMG-domain protein iBRAF promotes neural differentiation. Nat. Cell Biol. 7, 1113–1117 (2005).

    CAS  PubMed  Google Scholar 

  135. Urdinguio, R.G., Sanchez-Mut, J.V. & Esteller, M. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol. 8, 1056–1072 (2009).

    CAS  PubMed  Google Scholar 

  136. Hite, K.C., Adams, V.H. & Hansen, J.C. Recent advances in MeCP2 structure and function. Biochem. Cell Biol. 87, 219–227 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Chahrour, M. et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320, 1224–1229 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Urdinguio, R.G. et al. Mecp2-null mice provide new neuronal targets for Rett syndrome. PLoS ONE 3, e3669 (2008).

    PubMed  PubMed Central  Google Scholar 

  139. Nomura, T. et al. MeCP2-dependent repression of an imprinted miR-184 released by depolarization. Hum. Mol. Genet. 17, 1192–1199 (2008).

    CAS  PubMed  Google Scholar 

  140. Urdinguio, R.G. et al. Disrupted microRNA expression caused by Mecp2 loss in a mouse model of Rett syndrome. Epigenetics 5, 656–663 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Alarcon, J.M. et al. Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42, 947–959 (2004).

    CAS  PubMed  Google Scholar 

  142. Clayton, A.L., Rose, S., Barratt, M.J. & Mahadevan, L.C. Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation. EMBO J. 19, 3714–3726 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. De Sario, A. Clinical and molecular overview of inherited disorders resulting from epigenomic dysregulation. Eur. J. Med. Genet. 52, 363–372 (2009).

    PubMed  Google Scholar 

  144. Gheldof, N., Tabuchi, T.M. & Dekker, J. The active FMR1 promoter is associated with a large domain of altered chromatin conformation with embedded local histone modifications. Proc. Natl. Acad. Sci. USA 103, 12463–12468 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Pieper, H.C. et al. Different methylation of the TNF-alpha promoter in cortex and substantia nigra: Implications for selective neuronal vulnerability. Neurobiol. Dis. 32, 521–527 (2008).

    CAS  PubMed  Google Scholar 

  146. Murgatroyd, C. et al. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat. Neurosci. 12, 1559–1566 (2009).

    CAS  PubMed  Google Scholar 

  147. Robertson, K.D. DNA methylation and human disease. Nat. Rev. Genet. 6, 597–610 (2005).

    CAS  PubMed  Google Scholar 

  148. Herman, D. et al. Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia. Nat. Chem. Biol. 2, 551–558 (2006).

    CAS  PubMed  Google Scholar 

  149. Al-Mahdawi, S. et al. The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues. Hum. Mol. Genet. 17, 735–746 (2008).

    CAS  PubMed  Google Scholar 

  150. Kleine-Kohlbrecher, D. et al. A functional link between the histone demethylase PHF8 and the transcription factor ZNF711 in X-linked mental retardation. Mol. Cell 38, 165–178 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Kumari, D. & Usdin, K. Chromatin remodeling in the noncoding repeat expansion diseases. J. Biol. Chem. 284, 7413–7417 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Jin, B. et al. DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. Hum. Mol. Genet. 17, 690–709 (2008).

    CAS  PubMed  Google Scholar 

  153. Pan, W. et al. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J. Immunol. 184, 6773–6781 (2010).

    CAS  PubMed  Google Scholar 

  154. Javierre, B.M., Esteller, M. & Ballestar, E. Epigenetic connections between autoimmune disorders and haematological malignancies. Trends Immunol. 29, 616–623 (2008).

    CAS  PubMed  Google Scholar 

  155. Karouzakis, E., Gay, R.E., Gay, S. & Neidhart, M. Epigenetic control in rheumatoid arthritis synovial fibroblasts. Nat. Rev. Rheumatol. 5, 266–272 (2009).

    CAS  PubMed  Google Scholar 

  156. Mishra, N., Brown, D.R., Olorenshaw, I.M. & Kammer, G.M. Trichostatin A reverses skewed expression of CD154, interleukin-10, and interferon-gamma gene and protein expression in lupus T cells. Proc. Natl. Acad. Sci. USA 98, 2628–2633 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Vanden Berghe, W. et al. Keeping up NF-kappaB appearances: epigenetic control of immunity or inflammation-triggered epigenetics. Biochem. Pharmacol. 72, 1114–1131 (2006).

    CAS  PubMed  Google Scholar 

  158. Huber, L.C., Stanczyk, J., Jungel, A. & Gay, S. Epigenetics in inflammatory rheumatic diseases. Arthritis Rheum. 56, 3523–3531 (2007).

    CAS  PubMed  Google Scholar 

  159. Miao, F. et al. Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes 57, 3189–3198 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Ajiro, K. Histone H2B phosphorylation in mammalian apoptotic cells. An association with DNA fragmentation. J. Biol. Chem. 275, 439–443 (2000).

    CAS  PubMed  Google Scholar 

  161. Hurd, P.J. et al. Phosphorylation of histone H3 Thr-45 is linked to apoptosis. J. Biol. Chem. 284, 16575–16583 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. van Bavel, C.C. et al. Apoptosis-induced histone H3 methylation is targeted by autoantibodies in systemic lupus erythematosus. Ann. Rheum. Dis. published online doi: 10.1136/ard.2010.129320 (10 August 2010).

  163. Dieker, J.W. et al. Apoptosis-induced acetylation of histones is pathogenic in systemic lupus erythematosus. Arthritis Rheum. 56, 1921–1933 (2007).

    CAS  PubMed  Google Scholar 

  164. Van Bavel, J.J. & Cunningham, W.A. Self-categorization with a novel mixed-race group moderates automatic social and racial biases. Pers. Soc. Psychol. Bull. 35, 321–335 (2009).

    PubMed  Google Scholar 

  165. Verlaan, D.J. et al. Allele-specific chromatin remodeling in the ZPBP2/GSDMB/ORMDL3 locus associated with the risk of asthma and autoimmune disease. Am. J. Hum. Genet. 85, 377–393 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Turunen, M.P., Aavik, E. & Yla-Herttuala, S. Epigenetics and atherosclerosis. Biochim. Biophys. Acta 1790, 886–891 (2009).

    CAS  PubMed  Google Scholar 

  167. Movassagh, M. et al. Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PLoS ONE 5, e8564 (2010).

    PubMed  PubMed Central  Google Scholar 

  168. Hang, C.T. et al. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466, 62–67 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Symonds, M.E., Sebert, S.P., Hyatt, M.A. & Budge, H. Nutritional programming of the metabolic syndrome. Nat. Rev. Endocrinol. 5, 604–610 (2009).

    CAS  PubMed  Google Scholar 

  170. Zeng, W. et al. Specific loss of histone H3 lysine 9 trimethylation and HP1gamma/cohesin binding at D4Z4 repeats is associated with facioscapulohumeral dystrophy (FSHD). PLoS Genet. 5, e1000559 (2009).

    PubMed  PubMed Central  Google Scholar 

  171. Wilkins-Haug, L. Epigenetics and assisted reproduction. Curr. Opin. Obstet. Gynecol. 21, 201–206 (2009).

    PubMed  Google Scholar 

  172. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Ito, S. et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129–1133 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Ghildiyal, M. & Zamore, P.D. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10, 94–108 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Mattick, J.S. The genetic signatures of noncoding RNAs. PLoS Genet. 5, e1000459 (2009).

    PubMed  PubMed Central  Google Scholar 

  176. Bernstein, B. The NIH Roadmap Epigenome Mapping Consortium. Nat. Biotechnol. 28, 1045–1048 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Satterlee, J. Tackling the epigenome: challenges and opportunities for collaborative efforts. Nat. Biotechnol. 28, 1039–1044 (2010).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manel Esteller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Portela, A., Esteller, M. Epigenetic modifications and human disease. Nat Biotechnol 28, 1057–1068 (2010). https://doi.org/10.1038/nbt.1685

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1685

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer