Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The discovery and development of belimumab: the anti-BLyS–lupus connection

Abstract

For the first time in more than 50 years, the US Food and Drug Administration has approved a drug specifically for the treatment of systemic lupus erythematosus (SLE). This drug, belimumab (Benlysta), is a human monoclonal antibody that neutralizes the B-cell survival factor, B-lymphocyte stimulator (BLyS). The approval of belimumab combined a pioneering approach to genomics-based gene discovery, an astute appreciation of translational medicine, a disciplined clinical strategy, a willingness to take calculated risks, a devoted cadre of patients and physicians and a healthy dose of serendipity. Collectively, these efforts have provided a model for the development of a new generation of drugs to treat the broad manifestations of SLE. However, as a substantial percentage of SLE patients do not respond to belimumab, further research is needed to better characterize the pathogenetic mechanisms of SLE, identify additional therapeutic targets, and develop effective and nontoxic novel agents against these targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Important milestones in belimumab (Benlysta) achieving FDA approval in SLE.
Figure 2
Figure 3: The effect of belimumab on the binding of BLyS to its receptors.

Similar content being viewed by others

References

  1. Adams, M.D. et al. Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature 377 (suppl.), 3–174 (1995).

    CAS  PubMed  Google Scholar 

  2. International Publication Number WO 98/18921 published on May 7, 1998, corresponding to International Application Number PCT/US96/17957, filed October 25, 1996.

  3. Moore, P.A. et al. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 285, 260–263 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Shu, H.-B., Hu, W.-H. & Johnson, H. TALL-1 is a novel member of the TNF family that is down-regulated by mitogens. J. Leukoc. Biol. 65, 680–683 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Mukhopadhyay, A., Ni, J., Zhai, Y., Yu, G.-L. & Aggarwal, B.B. Identification and characterization of a novel cytokine, THANK, a TNF homologue that activates apoptosis, nuclear factor-κB, and c-Jun NH2-terminal kinase. J. Biol. Chem. 274, 15978–15981 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Schneider, P. et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J. Exp. Med. 189, 1747–1756 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tribouley, C. et al. Characterization of a new member of the TNF family expressed on antigen presenting cells. Biol. Chem. 380, 1443–1447 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Gross, J.A. et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease: impaired B cell maturation in mice lacking BLyS. Immunity 15, 289–302 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Schiemann, B. et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293, 2111–2114 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Yu, G. et al. APRIL and TALL-1 and receptors BCMA and TACI: system for regulating humoral immunity. Nat. Immunol. 1, 252–256 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Yan, M. et al. Identification of a receptor for BLyS demonstrates a crucial role in humoral immunity. Nat. Immunol. 1, 37–41 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Xia, X.-Z. et al. TACI is a TRAF-interacting receptor for TALL-1, a tumor necrosis factor family member involved in B cell regulation. J. Exp. Med. 192, 137–144 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khare, S.D. et al. Severe B cell hyperplasia and autoimmune disease in TALL-1 transgenic mice. Proc. Natl. Acad. Sci. USA 97, 3370–3375 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Do, R.K.G. et al. Attenuation of apoptosis underlies B lymphocyte stimulator enhancement of humoral immune response. J. Exp. Med. 192, 953–964 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stewart, D.M., McAvoy, M.J., Hilbert, D.M. & Nelson, D.L. B lymphocytes from individuals with common variable immunodeficiency respond to B lymphocyte stimulator (BLyS protein) in vitro. Clin. Immunol. 109, 137–143 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Knight, A.K. et al. High serum levels of BAFF, APRIL, and TACI in common variable immunodeficiency. Clin. Immunol. 124, 182–189 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mackay, F. et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med. 190, 1697–1710 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gross, J.A. et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 404, 995–999 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, J. et al. Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. J. Immunol. 166, 6–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Cheema, G.S., Roschke, V., Hilbert, D.M. & Stohl, W. Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum. 44, 1313–1319 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Thompson, J.S. et al. BAFF binds to the tumor necrosis factor receptor-like molecule B cell maturation antigen and is important for maintaining the peripheral B cell population. J. Exp. Med. 192, 129–136 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Batten, M. et al. BAFF mediates survival of peripheral immature B lymphocytes. J. Exp. Med. 192, 1453–1466 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lesley, R. et al. Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF. Immunity 20, 441–453 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Thien, M. et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 20, 785–798 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Ota, M. et al. Regulation of the B cell receptor repertoire and self-reactivity by BAFF. J. Immunol. 185, 4128–4136 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Nikbakht, N., Migone, T.-S., Ward, C.P. & Manser, T. Cellular competition independent of BAFF/B lymphocyte stimulator results in low frequency of an autoreactive clonotype in mature polyclonal B cell compartments. J. Immunol. 187, 37–46 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Carson, K.R. et al. Progressive multifocal leukoencephalopathy after rituximab therapy in HIV-negative patients: a report of 57 cases from the Research on Adverse Drug Events and Reports project. Blood 113, 4834–4840 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fillatreau, S., Sweenie, C.H., McGeachy, M.J., Gray, D. & Anderton, S.M. B cells regulate autoimmunity by provision of IL-10. Nat. Immunol. 3, 944–950 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Matsushita, T., Yanaba, K., Bouaziz, J.-D., Fujimoto, M. & Tedder, T.F. Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J. Clin. Invest. 118, 3420–3430 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Haas, K.M. et al. Protective and pathogenic roles for B cells during systemic autoimmunity in NZB/W F1 mice. J. Immunol. 184, 4789–4800 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Watanabe, R. et al. Regulatory B cells (B10 cells) have a suppressive role in murine lupus: CD19 and B10 cell deficiency exacerbates systemic autoimmunity. J. Immunol. 184, 4801–4809 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Iwata, Y. et al. Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 117, 530–541 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huard, B., Schneider, P., Mauri, D., Tschopp, J. & French, L.E. T cell costimulation by the TNF ligand BAFF. J. Immunol. 167, 6225–6231 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Ng, L.G. et al. B cell-activating factor belonging to the TNF family (BAFF)-R is the principal BAFF receptor facilitating BAFF costimulation of circulating T and B cells. J. Immunol. 173, 807–817 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Sutherland, A.P.R. et al. BAFF augments certain Th1-associated inflammatory responses. J. Immunol. 174, 5537–5544 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Zhou, X. et al. BAFF promotes Th17 cells and aggravates experimental autoimmune encephalomyelitis. PLoS ONE 6, e23629 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jacob, N. et al. Accelerated pathological and clinical nephritis in systemic lupus erythematosus-prone New Zealand Mixed 2328 mice doubly deficient in TNF receptor 1 and TNF receptor 2 via a Th17-associated pathway. J. Immunol. 182, 2532–2541 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, Z., Kyttaris, V.C. & Tsokos, G.C. The role of IL-23/IL-17 axis in lupus nephritis. J. Immunol. 183, 3160–3169 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Baker, K.P. et al. Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator. Arthritis Rheum. 48, 3253–3265 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Halpern, W. et al. Chronic administration of belimumab, a BLyS antagonist, decreases tissue and peripheral blood B-lymphocyte populations in cynomolgus monkeys: pharmacokinetic, pharmacodynamic and toxicologic effects. Toxicol. Sci. 91, 586–599 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Furie, R. et al. Biologic activity and safety of belimumab, a neutralizing anti-B-lymphocyte stimulator (BLyS) monoclonal antibody: a phase I trial in patients with systemic lupus erythematosus. Arthritis Res. Ther. 10, R109 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Petri, M. et al. Association of plasma B lymphocyte stimulator levels and disease activity in systemic lupus erythematosus. Arthritis Rheum. 58, 2453–2459 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Collins, C.E. et al. B lymphocyte stimulator (BLyS) isoforms in systemic lupus erythematosus: disease activity correlates better with blood leukocyte BLyS mRNA levels than with plasma BLyS protein levels. Arthritis Res. Ther. 8, R6 (2006).

    Article  PubMed  Google Scholar 

  44. Becker-Merok, A., Nikolaisen, C. & Nossent, H.C. B-lymphocyte activating factor in systemic lupus erythematosus and rheumatoid arthritis in relation to autoantibody levels, disease measures and time. Lupus 15, 570–576 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Ju, S. et al. Correlation of the expression levels of BLyS and its receptors mRNA in patients with systemic lupus erythematosus. Clin. Biochem. 39, 1131–1137 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Marsters, S.A. et al. Interaction of the TNF homologues BLyS and APRIL with the receptor homologues BCMA and TACI. Curr. Biol. 10, 785–788 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Wu, Y. et al. Tumor necrosis factor (TNF) receptor superfamily member TACI is a high affinity receptor for TNF family members APRIL and BLyS. J. Biol. Chem. 275, 35478–35485 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Rennert, P. et al. A soluble form of B cell maturation antigen, a receptor for the tumor necrosis factor family member APRIL, inhibits tumor cell growth. J. Exp. Med. 192, 1677–1684 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thompson, J.S. et al. BAFF-R, a novel TNF receptor that specifically interacts with BAFF. Science 293, 2108–2111 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Yan, M. et al. Identification of a novel receptor for B lymphocyte stimulator that is mutated in a mouse strain with severe B cell deficiency. Curr. Biol. 11, 1547–1552 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Varfolomeev, E. et al. APRIL-deficient mice have normal immune system development. Mol. Cell. Biol. 24, 997–1006 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Castigli, E. et al. Impaired IgA class switching in APRIL-deficient mice. Proc. Natl. Acad. Sci. USA 101, 3903–3908 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Benson, M.J. et al. Cutting edge: the dependence of plasma cells and independence of memory B cells on BAFF and APRIL. J. Immunol. 180, 3655–3659 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Belnoue, E. et al. APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood 111, 2755–2764 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Roschke, V. et al. BLyS and APRIL form biologically active heterotrimers that are expressed in patients with systemic immune-based rheumatic diseases. J. Immunol. 169, 4314–4321 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Carbonatto, M. et al. Nonclinical safety, pharmacokinetics, and phamcodynamics of atacicept. Toxicol. Sci. 105, 200–210 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Dall'Era, M. et al. Reduced B lymphocyte and immunoglobulin levels after atacicept treatment in patients with systemic lupus erythematosus: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating trial. Arthritis Rheum. 56, 4142–4150 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Belouski, S.S., Rasmussen, H.E., Thomas, J.K., Ferbas, J. & Zack, D.J. Changes in B cells and B cell subsets induced by BAFF neutralization in vivo. Arthritis Rheum. 56, S565 (2007).

    Google Scholar 

  59. Sabahi, R. et al. Immunologic effects of BAFF antagonism in the treatment of human SLE. Arthritis Rheum. 56, S566 (2007).

    Google Scholar 

  60. Kayagaki, N. et al. BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-κB2. Immunity 17, 515–524 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Vugmeyster, Y. et al. A soluble BAFF antagonist, BR3-Fc, decreases peripheral blood B cells and lymphoid tissue marginal zone and follicular B cells in cynomolgus monkeys. Am. J. Pathol. 168, 476–489 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cragg, M.S., Walshe, C.A., Ivanov, A.O. & Glennie, M.J. The biology of CD20 and its potential as a target for mAb therapy. Curr. Dir. Autoimmun. 8, 140–174 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Edwards, J.C.W. et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 350, 2572–2581 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Leandro, M.J., Edwards, J.C., Cambridge, G., Ehrenstein, M.R. & Isenberg, D.A. An open study of B lymphocyte depletion in systemic lupus erythematosus. Arthritis Rheum. 46, 2673–2677 (2002).

    Article  PubMed  Google Scholar 

  65. Looney, R.J. et al. B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab. Arthritis Rheum. 50, 2580–2589 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Wang, H. et al. TACI-ligand interactions are required for T cell activation and collagen-induced arthritis in mice. Nat. Immunol. 2, 632–637 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. McKay, J. et al. Belimumab (BmAb), a fully human monoclonal antibody to B-lymphocyte stimulator (BLyS), combined with standard of care therapy reduces the signs and symptoms of rheumatoid arthritis in a heterogeneous subject population. Arthritis Rheum. 52, S710–S711 (2005).

    Article  Google Scholar 

  68. Stohl, W. et al. Belimumab (BmAb), a novel fully human monoclonal antibody to B-lymphocyte stimulator (BLyS), selectively modulates B-cell sub-populations and immunoglobulins in a heterogeneous rheumatoid arthritis subject population. Arthritis Rheum. 52, S444 (2005).

    Article  Google Scholar 

  69. Wallace, D.J. et al. A phase II, randomized, double-blind, placebo-controlled, dose-ranging study of belimumab in patients with active systemic lupus erythematosus. Arthritis Rheum. 61, 1168–1178 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Furie, R.A. et al. Novel evidence-based systemic lupus erythematosus responder index. Arthritis Rheum. 61, 1143–1151 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Navarra, S.V. et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377, 721–731 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Furie, R. et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 63, 3918–3930 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Merrill, J.T. et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 62, 222–233 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Furie, R. et al. Efficacy and safety of rituximab in subjects with active proliferative lupus nephritis (LN): results from the randomized, double-blind phase III LUNAR study. Arthritis Rheum. 60, S429 (2009).

    Google Scholar 

  75. Ramos-Casals, M., Díaz-Lagares, C. & Khamashta, M.A. Rituximab and lupus: good in real life, bad in controlled trials. Comment on the article by Lu et al. Arthritis Rheum. 61, 1281–1282 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Looney, R.J. B cell-targeted therapies for systemic lupus erythematosus: an update on clinical trial data. Drugs 70, 529–540 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Ramanujam, M. et al. Similarities and differences between selective and nonselective BAFF blockade in murine SLE. J. Clin. Invest. 116, 724–734 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jacob, C.O. et al. Paucity of clinical disease despite serological autoimmunity and kidney pathology in lupus-prone New Zealand Mixed 2328 mice deficient in BAFF. J. Immunol. 177, 2671–2680 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Shlomchik, M.J., Madaio, M.P., Ni, D., Trounstein, M. & Huszar, D. The role of B cells in lpr/lpr-induced autoimmunity. J. Exp. Med. 180, 1295–1306 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. Jacob, N. et al. B cell and BAFF dependence of IFN-α-exaggerated disease in systemic lupus erythematosus-prone NZM 2328 mice. J. Immunol. 186, 4984–4993 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank T.-S. Migone and W. Freimuth of HGS for helpful discussions and assistance with the time line. The work was supported in part by NIH grant R01 AR050193 to W.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Stohl.

Ethics declarations

Competing interests

W.S. received clinical trials support from Human Genome Sciences. D.M.H. is a former employee of Human Genome Sciences and a current employee of Zyngenia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stohl, W., Hilbert, D. The discovery and development of belimumab: the anti-BLyS–lupus connection. Nat Biotechnol 30, 69–77 (2012). https://doi.org/10.1038/nbt.2076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2076

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing