Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis

A Corrigendum to this article was published on 10 June 2013

This article has been updated

Abstract

Aberrant T-cell activation underlies many autoimmune disorders, yet most attempts to induce T-cell tolerance have failed. Building on previous strategies for tolerance induction that exploited natural mechanisms for clearing apoptotic debris, we show that antigen-decorated microparticles (500-nm diameter) induce long-term T-cell tolerance in mice with relapsing experimental autoimmune encephalomyelitis. Specifically, intravenous infusion of either polystyrene or biodegradable poly(lactide-co-glycolide) microparticles bearing encephalitogenic peptides prevents the onset and modifies the course of the disease. These beneficial effects require microparticle uptake by marginal zone macrophages expressing the scavenger receptor MARCO and are mediated in part by the activity of regulatory T cells, abortive T-cell activation and T-cell anergy. Together these data highlight the potential for using microparticles to target natural apoptotic clearance pathways to inactivate pathogenic T cells and halt the disease process in autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antigen-coupled polystyrene microparticles are effective for inducing tolerance for the prevention and treatment of EAE.
Figure 2: MARCO has a crucial role in tolerance induction using antigen-coupled microparticles.
Figure 3: Response of antigen-specific T cells to tolerance induction with Ag-PSB.
Figure 4: Antigen-specific T cells undergo suboptimal proliferation in response to Ag-PSB.
Figure 5: Antigen-specific T cells are abortively activated after Ag-PSB encounter but do not synthesize IL-17A and IFN-γ after direct in vivo exposure to Ag-PSB or after subsequent immunogenic stimulation.
Figure 6: Short-term tolerance induced by i.v. treatment with Ag-PSB is caused primarily by anergy induction.

Similar content being viewed by others

Change history

  • 04 June 2013

    In the version of this article initially published, the description of mice in the first paragraph of Online Methods was incomplete. Female SJL/J mice should have been described as SJL/JCrHsD; female BALB/c mice, as BALB/cJ mice; TCR transgenic mice expressing a TCR on the SJL/J background, expressed it on the SJL/JCrHsD background. Marco−/− mice, described as “on the BALB/c background,” should have been described as backcrossed to the BALB/cAncr1 (Charles River) background. The errors have been corrected in the HTML and PDF versions of the article.

References

  1. Christen, U. & von Herrath, M.G. Initiation of autoimmunity. Curr. Opin. Immunol. 16, 759–767 (2004).

    Article  CAS  Google Scholar 

  2. Chatenoud, L. & Bluestone, J.A. CD3-specific antibodies: a portal to the treatment of autoimmunity. Nat. Rev. Immunol. 7, 622–632 (2007).

    Article  CAS  Google Scholar 

  3. Kohm, A.P., Turley, D.M. & Miller, S.D. Targeting the TCR: T-cell receptor and peptide-specific tolerance-based strategies for restoring self-tolerance in CNS autoimmune disease. Int. Rev. Immunol. 24, 361–392 (2005).

    Article  CAS  Google Scholar 

  4. Miller, S.D., Turley, D.M. & Podojil, J.R. Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease. Nat. Rev. Immunol. 7, 665–677 (2007).

    Article  CAS  Google Scholar 

  5. Herold, K.C. et al. Treatment of patients with new onset Type 1 diabetes with a single course of anti-CD3 mAb Teplizumab preserves insulin production for up to 5 years. Clin. Immunol. 132, 166–173 (2009).

    Article  CAS  Google Scholar 

  6. Bielekova, B. et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat. Med. 6, 1167–1175 (2000).

    Article  CAS  Google Scholar 

  7. Papadopoulou, A. et al. Evolution of MS lesions to black holes under DNA vaccine treatment. J. Neurol. 259, 1375–1382 (2012).

    Article  CAS  Google Scholar 

  8. Freedman, M.S. et al. A phase III study evaluating the efficacy and safety of MBP8298 in secondary progressive MS. Neurology 77, 1551–1560 (2011).

    Article  CAS  Google Scholar 

  9. Smith, C.E., Eagar, T.N., Strominger, J.L. & Miller, S.D. Differential induction of IgE-mediated anaphylaxis after soluble vs. cell-bound tolerogenic peptide therapy of autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 102, 9595–9600 (2005).

    Article  CAS  Google Scholar 

  10. Vanderlugt, C.L. et al. Pathologic role and temporal appearance of newly emerging autoepitopes in relapsing experimental autoimmune encephalomyelitis. J. Immunol. 164, 670–678 (2000).

    Article  CAS  Google Scholar 

  11. Turley, D.M. & Miller, S.D. Peripheral tolerance Induction using ethylenecarbodiimide-fixed APCs uses both direct and indirect mechanisms of antigen presentation for prevention of experimental autoimmune encephalomyelitis. J. Immunol. 178, 2212–2220 (2007).

    Article  CAS  Google Scholar 

  12. Getts, D.R. et al. Tolerance induced by apoptotic antigen-coupled leukocytes is induced by PD-L1+ and IL-10-producing splenic macrophages and maintained by T regulatory cells. J. Immunol. 187, 2405–2417 (2011).

    Article  CAS  Google Scholar 

  13. Tyner, K. & Sadrieh, N. Considerations when submitting nanotherapeutics to FDA/CDER for regulatory review. Methods Mol. Biol. 697, 17–31 (2011).

    Article  CAS  Google Scholar 

  14. Zolnik, B.S., Gonzalez-Fernandez, A., Sadrieh, N. & Dobrovolskaia, M.A. Nanoparticles and the immune system. Endocrinology 151, 458–465 (2010).

    Article  CAS  Google Scholar 

  15. Viorritto, I.C., Nikolov, N.P. & Siegel, R.M. Autoimmunity versus tolerance: can dying cells tip the balance? Clin. Immunol. 122, 125–134 (2007).

    Article  CAS  Google Scholar 

  16. Eagar, T.N. et al. CTLA-4 regulates expansion and differentiation of Th1 cells following induction of peripheral T cell tolerance. J. Immunol. 172, 7442–7450 (2004).

    Article  CAS  Google Scholar 

  17. Fife, B.T. et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat. Immunol. 10, 1185–1192 (2009).

    Article  CAS  Google Scholar 

  18. Luo, X. et al. ECDI-fixed allogeneic splenocytes induce donor-specific tolerance for long-term survival of islet transplants via two distinct mechanisms. Proc. Natl. Acad. Sci. USA 105, 14527–14532 (2008).

    Article  CAS  Google Scholar 

  19. Areschoug, T. & Gordon, S. Scavenger receptors: role in innate immunity and microbial pathogenesis. Cell. Microbiol. 11, 1160–1169 (2009).

    Article  CAS  Google Scholar 

  20. Dahl, M. et al. Protection against inhaled oxidants through scavenging of oxidized lipids by macrophage receptors MARCO and SR-AI/II. J. Clin. Invest. 117, 757–764 (2007).

    Article  CAS  Google Scholar 

  21. Palecanda, A. et al. Role of the scavenger receptor MARCO in alveolar macrophage binding of unopsonized environmental particles. J. Exp. Med. 189, 1497–1506 (1999).

    Article  CAS  Google Scholar 

  22. Kraal, G., Ter Hart, H., Meelhuizen, C., Venneker, G. & Claassen, E. Marginal zone macrophages and their role in the immune response against T-independent type 2 antigens: modulation of the cells with specific antibody. Eur. J. Immunol. 19, 675–680 (1989).

    Article  CAS  Google Scholar 

  23. Lyszkiewicz, M. et al. SIGN-R1+MHC II+ cells of the splenic marginal zone–a novel type of resident dendritic cells. J. Leukoc. Biol. 89, 607–615 (2011).

    Article  CAS  Google Scholar 

  24. Kang, Y.S. et al. SIGN-R1, a novel C-type lectin expressed by marginal zone macrophages in spleen, mediates uptake of the polysaccharide dextran. Int. Immunol. 15, 177–186 (2003).

    Article  CAS  Google Scholar 

  25. Kohm, A.P. et al. Cutting Edge: Anti-CD25 mAb injection results in the functional inactivation, not depletion of CD4+CD25+ Treg cells. J. Immunol. 176, 3301–3305 (2006).

    Article  CAS  Google Scholar 

  26. Beverly, B., Kang, S.M., Lenardo, M.J. & Schwartz, R.H. Reversal of in vitro T cell clonal anergy by IL-2 stimulation. Int. Immunol. 4, 661–671 (1992).

    Article  CAS  Google Scholar 

  27. Smarr, C.B., Hsu, C.L., Byrne, A.J., Miller, S.D. & Bryce, P.J. Antigen-fixed leukocytes tolerize Th2 responses in mouse models of allergy. J. Immunol. 187, 5090–5098 (2011).

    Article  CAS  Google Scholar 

  28. Martin, A.J. et al. Ethylenecarbodiimide-treated splenocytes carrying male CD4 epitopes confer Hya transplant protection by inhibiting CD154 upregulation. J. Immunol. 185, 3326–3336 (2010).

    Article  CAS  Google Scholar 

  29. Herold, K.C. et al. A single course of anti-CD3 monoclonal antibody hOKT3gamma1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 54, 1763–1769 (2005).

    Article  CAS  Google Scholar 

  30. Ilan, Y. et al. Oral administration of OKT3 monoclonal antibody to human subjects induces a dose-dependent immunologic effect in T cells and dendritic cells. J. Clin. Immunol. 30, 167–177 (2010).

    Article  CAS  Google Scholar 

  31. Liblau, R.S. et al. High-dose soluble antigen: peripheral T-cell proliferation or apoptosis. Immunol. Rev. 142, 193–208 (1994).

    Article  CAS  Google Scholar 

  32. Fontoura, P. & Garren, H. Multiple sclerosis therapies: molecular mechanisms and future. Results Probl. Cell Differ. 51, 259–285 (2010).

    Article  CAS  Google Scholar 

  33. Ludvigsson, J. et al. GAD65 antigen therapy in recently diagnosed type 1 diabetes mellitus. N. Engl. J. Med. 366, 433–442 (2012).

    Article  CAS  Google Scholar 

  34. Chen, Y., Kuchroo, V.K., Inobe, J., Hafler, D.A. & Weiner, H.L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237–1240 (1994).

    Article  CAS  Google Scholar 

  35. Luo, X., Herold, K.C. & Miller, S.D. Immunotherapy of type 1 diabetes: where are we and where should we be going? Immunity 32, 488–499 (2010).

    Article  CAS  Google Scholar 

  36. Sherr, J., Sosenko, J., Skyler, J.S. & Herold, K.C. Prevention of type 1 diabetes: the time has come. Nat. Clin. Pract. Endocrinol. Metab. 4, 334–343 (2008).

    Article  Google Scholar 

  37. Garren, H. et al. Phase 2 trial of a DNA vaccine encoding myelin basic protein for multiple sclerosis. Ann. Neurol. 63, 611–620 (2008).

    Article  CAS  Google Scholar 

  38. Racke, M.K. & Lovett-Racke, A.E. Glatiramer acetate treatment of multiple sclerosis: an immunological perspective. J. Immunol. 186, 1887–1890 (2011).

    Article  CAS  Google Scholar 

  39. Lalive, P.H. et al. Glatiramer acetate in the treatment of multiple sclerosis: emerging concepts regarding its mechanism of action. CNS Drugs 25, 401–414 (2011).

    Article  CAS  Google Scholar 

  40. Kanno, S., Furuyama, A. & Hirano, S. A murine scavenger receptor MARCO recognizes polystyrene nanoparticles. Toxicol. Sci. 97, 398–406 (2007).

    Article  CAS  Google Scholar 

  41. Chen, X.W. et al. Anti-class a scavenger receptor autoantibodies from systemic lupus erythematosus patients impair phagocytic clearance of apoptotic cells by macrophages in vitro. Arthritis Res. Ther. 13, R9 (2011).

    Article  Google Scholar 

  42. Kranich, J. et al. Follicular dendritic cells control engulfment of apoptotic bodies by secreting Mfge8. J. Exp. Med. 205, 1293–1302 (2008).

    Article  CAS  Google Scholar 

  43. Thelen, T. et al. The class A scavenger receptor, macrophage receptor with collagenous structure, is the major phagocytic receptor for Clostridium sordellii expressed by human decidual macrophages. J. Immunol. 185, 4328–4335 (2010).

    Article  CAS  Google Scholar 

  44. Thakur, S.A., Hamilton, R. Jr., Pikkarainen, T. & Holian, A. Differential binding of inorganic particles to MARCO. Toxicol. Sci. 107, 238–246 (2009).

    Article  CAS  Google Scholar 

  45. Arredouani, M.S. et al. Scavenger Receptors SR-AI/II and MARCO limit pulmonary dendritic cell migration and allergic airway inflammation. J. Immunol. 178, 5912–5920 (2007).

    Article  CAS  Google Scholar 

  46. Ghosh, S., Gregory, D., Smith, A. & Kobzik, L. MARCO regulates early inflammatory responses against influenza: A useful macrophage function with adverse outcome. Am. J. Respir. Cell Mol. Biol. 45, 1036–1044 (2011).

    Article  CAS  Google Scholar 

  47. DeSilva, D.R., Urdahl, K.B. & Jenkins, M.K. Clonal anergy is induced in vitro by T cell receptor occupancy in the absence of proliferation. J. Immunol. 147, 3261–3267 (1991).

    CAS  PubMed  Google Scholar 

  48. Bailey, S.L., Schreiner, B., McMahon, E.J. & Miller, S.D. CNS myeloid DCs presenting endogenous myelin peptides 'preferentially' polarize CD4(+) T(H)-17 cells in relapsing EAE. Nat. Immunol. 8, 172–180 (2007).

    Article  CAS  Google Scholar 

  49. Schreiner, B., Bailey, S.L., Shin, T., Chen, L. & Miller, S.D. PD-1 ligands expressed on myeloid-derived APC in the CNS regulate T-cell responses in EAE. Eur. J. Immunol. 38, 2706–2717 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Myelin Repair Foundation, US National Institutes of Health grants NS026543 and EB013198, Juvenile Diabetes Research Foundation grant 17-2011-343 and the Australian National Health and Medical Research Council grants 512413 and 1030897. We also thank V. Kuchroo and L. Kobchik of Harvard University for providing transgenic mice.

Author information

Authors and Affiliations

Authors

Contributions

D.R.G. and A.J.M. designed and performed the majority of the experiments, interpreted results and assisted with manuscript preparation. D.P.M., R.L.T., Z.N.H., W.T.Y. and M.T.G. performed and/or assisted with several experiments. X.L. provided reagents and advice. S.D.M. provided intellectual input, secured the funding and guided experimental design and the preparation of the manuscript with major input from M.P., N.J.C.K. and L.D.S.

Corresponding authors

Correspondence to Nicholas JC King, Lonnie D Shea or Stephen D Miller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 364 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Getts, D., Martin, A., McCarthy, D. et al. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol 30, 1217–1224 (2012). https://doi.org/10.1038/nbt.2434

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2434

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research