Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Characterizing biological products and assessing comparability following manufacturing changes

Abstract

Changes in production methods of a biological product may necessitate an assessment of comparability to ensure that these manufacturing changes have not affected the safety, identity, purity, or efficacy of the product. Depending on the nature of the protein or the change, this assessment consists of a hierarchy of sequential tests in analytical testing, preclinical animal studies and clinical studies. Differences in analytical test results between pre- and post-change products may require functional testing to establish the biological or clinical significance of the observed difference. An underlying principle of comparability is that under certain conditions, protein products may be considered comparable on the basis of analytical testing results alone. However, the ability to compare biological materials is solely dependent on the tests used, since no single analytical method is able to compare every aspect of protein structure or function. The advantages and disadvantages of any given method depends on the protein property being characterized.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical forms of protein heterogeneity.

Similar content being viewed by others

References

  1. Johnson, I.S. The trials and tribulations of producing the first genetically engineered drug. Nat. Rev. Drug Discov. 2, 747–751 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. Schmelzer, A.E. & Miller, W.M. Hyperosmotic stress and elevated pCO2 alter monoclonal antibody charge distribution and monosaccharide content. Biotechnol. Prog. 18, 346–353 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. Okamoto, M. et al. Purification and characterization of three forms of differently glycosylated recombinant human granulocyte-macrophage colony-stimulating factor. Arch. Biochem. Biophys. 286, 562–568 (1991).

    Article  PubMed  CAS  Google Scholar 

  4. Macdougall, I.C. Optimizing the use of erythropoietic agents—pharmacokinetic and pharmacodynamic considerations. Nephrol. Dial. Transplant. 17 suppl. 5, 66–70 (2002).

    Article  PubMed  CAS  Google Scholar 

  5. Van Den Hamer, C.J., Morell, A.G., Scheinberg, I.H., Hickman, J. & Ashwell, G. Physical and chemical studies on ceruloplasmin. IX. The role of galactosyl residues in the clearance of ceruloplasmin from the circulation. J. Biol. Chem. 245, 4397–4402 (1970).

    PubMed  CAS  Google Scholar 

  6. Stockert, R.J. The asialoglycoprotein receptor: relationships between structure, function, and expression. Physiol. Rev. 75, 591–609 (1995).

    Article  PubMed  CAS  Google Scholar 

  7. Wright, A. et al. In vivo trafficking and catabolism of IgG1 antibodies with Fc associated carbohydrates of differing structure. Glycobiology 10, 1347–1355 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. Wright, A. & Morrison, S.L. Effect of glycosylation on antibody function: implications for genetic engineering. Trends Biotechnol. 15, 26–32 (1997).

    Article  PubMed  CAS  Google Scholar 

  9. Jefferis, R. Glycosylation of human IgG antibodies: relevance to therapeutic applications. Biopharm 14, 19–26 (2001).

    CAS  Google Scholar 

  10. Boyd, P.N., Lines, A.C. & Patel, A.K. The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of Campath-1H. Mol. Immunol. 32, 1311–1318 (1995).

    Article  PubMed  CAS  Google Scholar 

  11. Wright, A. & Morrison, S.L. Effect of C2-associated carbohydrate structure on Ig effector function: studies with chimeric mouse-human IgG1 antibodies in glycosylation mutants of Chinese hamster ovary cells. J. Immunol. 160, 3393–3402 (1998).

    PubMed  CAS  Google Scholar 

  12. Idusogie, E.E. et al. Mapping of the C1q binding site on rituxan, a chimeric antibody with a human IgG1 Fc. J. Immunol. 164, 4178–4184 (2000).

    Article  PubMed  CAS  Google Scholar 

  13. Shields, R.L. et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J. Biol. Chem. 277, 26733–26740 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. Shinkawa, T. et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 278, 3466–3473 (2003).

    Article  PubMed  CAS  Google Scholar 

  15. Li, J. et al. Thrombocytopenia caused by the development of antibodies to thrombopoietin. Blood 98, 3241–3248 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. Casadevall, N. et al. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N. Engl. J. Med. 346, 469–475 (2002).

    Article  PubMed  CAS  Google Scholar 

  17. Koren, E., Zuckerman, L.A. & Mire-Sluis, A.R. Immune responses to therapeutic proteins in humans—clinical significance, assessment and prediction. Curr. Pharm. Biotechnol. 3, 349–360 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. Schellekens, H. Bioequivalence and the immunogenicity of biopharmaceuticals. Nat. Rev. Drug Discov. 1, 457–462 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. Chirino, A.J., Ary, M.L. & Marshall, S.A. Minimizing the immunogenicity of protein therapeutics. Drug Discov. Today 9, 82–90 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. Cleland, J.L., Powell, M.F. & Shire, S.J. The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit. Rev. Ther. Drug Carrier Syst. 10, 307–377 (1993).

    PubMed  CAS  Google Scholar 

  21. Ryff, J.C. Clinical investigation of the immunogenicity of interferon-alpha 2a. J. Interferon Cytokine Res. 17 suppl. 1, S29–S33 (1997).

    PubMed  CAS  Google Scholar 

  22. Josic, D. et al. Degradation products of factor VIII which can lead to increased immunogenicity. Vox Sang. 77 suppl. 1, 90–99 (1999).

    Article  PubMed  CAS  Google Scholar 

  23. Miller, L.L. et al. Abrogation of the hematological and biological activities of the interleukin-3/granulocyte-macrophage colony-stimulating factor fusion protein PIXY321 by neutralizing anti-PIXY321 antibodies in cancer patients receiving high-dose carboplatin. Blood 93, 3250–3258 (1999).

    Article  PubMed  CAS  Google Scholar 

  24. Wadhwa, M. et al. Immunogenicity of granulocyte-macrophage colony-stimulating factor (GM-CSF) products in patients undergoing combination therapy with GM-CSF. Clin. Cancer Res. 5, 1353–1361 (1999).

    PubMed  CAS  Google Scholar 

  25. Braun, A., Kwee, L., Labow, M.A. & Alsenz, J. Protein aggregates seem to play a key role among the parameters influencing the antigenicity of interferon alpha (IFN-alpha) in normal and transgenic mice. Pharm. Res. 14, 1472–1478 (1997).

    Article  PubMed  CAS  Google Scholar 

  26. Bertolotto, A. et al. Interferon beta neutralizing antibodies in multiple sclerosis: neutralizing activity and cross-reactivity with three different preparations. Immunopharmacology 48, 95–100 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. Bertolotto, A. et al. Differential effects of three interferon betas on neutralising antibodies in patients with multiple sclerosis: a follow up study in an independent laboratory. J. Neurol. Neurosurg. Psychiatry 73, 148–153 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Luo, P. et al. Development of a cytokine analog with enhanced stability using computational ultrahigh throughput screening. Protein Sci. 11, 1218–1226 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hu, S. & Dovichi, N.J. Capillary electrophoresis for the analysis of biopolymers. Anal. Chem. 74, 2833–2850 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. Ma, S. & Nashabeh, W. Analysis of protein therapeutics by capillary electrophoresis. Chromatographia 53, S75–S89 (2001).

    Google Scholar 

  31. Ma, S. & Nashabeh, W. Carbohydrate analysis of a chimeric recombinant monoclonal antibody by capillary electrophoresis with laser-induced fluorescence detection. Anal. Chem. 71, 5185–5192 (1999).

    Article  PubMed  CAS  Google Scholar 

  32. Lu, W., Han, D.S., Yuan, J. & Andrieu, J.M. Multi-target PCR analysis by capillary electrophoresis and laser-induced fluorescence. Nature 368, 269–271 (1994).

    Article  PubMed  CAS  Google Scholar 

  33. Chen, F.T., Dobashi, T.S. & Evangelista, R.A. Quantitative analysis of sugar constituents of glycoproteins by capillary electrophoresis. Glycobiology 8, 1045–1052 (1998).

    Article  PubMed  CAS  Google Scholar 

  34. Raju, T.S., Briggs, J.B., Borge, S.M. & Jones, A.J. Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10, 477–486 (2000).

    Article  PubMed  CAS  Google Scholar 

  35. Lee, T.T. & Yeung, E.S. High-sensitivity laser-induced fluorescence detection of native proteins in capillary electrophoresis. J. Chromatogr. 595, 319–325 (1992).

    Article  PubMed  CAS  Google Scholar 

  36. Colyer, C. Noncovalent labeling of proteins in capillary electrophoresis with laser-induced fluorescence detection. Cell Biochem. Biophys. 33, 323–337 (2000).

    Article  PubMed  CAS  Google Scholar 

  37. Lin, Y.W., Chiu, T.C. & Chang, H.T. Laser-induced fluorescence technique for DNA and proteins separated by capillary electrophoresis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 793, 37–48 (2003).

    Article  PubMed  CAS  Google Scholar 

  38. Rudd, P.M. & Dwek, R.A. Rapid, sensitive sequencing of oligosaccharides from glycoproteins. Curr. Opin. Biotechnol. 8, 488–497 (1997).

    Article  PubMed  CAS  Google Scholar 

  39. Harvey, D.J. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates and glycoconjugates. Int. J. Mass Spectrom. 226, 1–35 (2003).

    Article  CAS  Google Scholar 

  40. Moorhouse, K.G. et al. Validation of an HPLC method for the analysis of the charge heterogeneity of the recombinant monoclonal antibody IDEC-C2B8 after papain digestion. J. Pharm. Biomed. Anal. 16, 593–603 (1997).

    Article  PubMed  CAS  Google Scholar 

  41. Gitlin, G. et al. Isolation and characterization of a monomethioninesulfoxide variant of interferon alpha-2b. Pharm. Res. 13, 762–769 (1996).

    Article  PubMed  CAS  Google Scholar 

  42. Paranandi, M.V., Guzzetta, A.W., Hancock, W.S. & Aswad, D.W. Deamidation and isoaspartate formation during in vitro aging of recombinant tissue plasminogen activator. J. Biol. Chem. 269, 243–253 (1994).

    PubMed  CAS  Google Scholar 

  43. Renlund, S. et al. Peptide mapping on HIV polypeptides expressed in Escherichia coli. Quality control of different batches and identification of tryptic fragments containing residues of aromatic amino acids or cysteine. J. Chromatogr. 512, 325–335 (1990).

    Article  PubMed  CAS  Google Scholar 

  44. Zhang, W., Czupryn, J.M., Boyle, P.T., Jr & Amari, J. Characterization of asparagine deamidation and aspartate isomerization in recombinant human interleukin-11. Pharm. Res. 19, 1223–1231 (2002).

    Article  PubMed  CAS  Google Scholar 

  45. Harris, R.J. et al. Assessing genetic heterogeneity in production cell lines: detection by peptide mapping of a low level Tyr to Gln sequence variant in a recombinant antibody. Bio/Technology 11, 1293–1297 (1993).

    PubMed  CAS  Google Scholar 

  46. Besman, M.J. & Shiba, D. Evaluation of genetic stability of recombinant human factor VIII by peptide mapping and on-line mass spectrometric analysis. Pharm. Res. 14, 1092–1098 (1997).

    Article  PubMed  CAS  Google Scholar 

  47. Lopez Garcia, F., Zahn, R., Riek, R. & Wuthrich, K. NMR structure of the bovine prion protein. Proc. Natl. Acad. Sci. USA 97, 8334–8339 (2000).

    Article  PubMed  CAS  Google Scholar 

  48. Watson, E., Bhide, A. & van Halbeek, H. Structure determination of the intact major sialylated oligosaccharide chains of recombinant human erythropoietin expressed in Chinese hamster ovary cells. Glycobiology 4, 227–237 (1994).

    Article  PubMed  CAS  Google Scholar 

  49. Jacobsen, N.E. et al. Structure of the saponin adjuvant QS-21 and its base-catalyzed isomerization product by 1H and natural abundance 13C NMR spectroscopy. Carbohydr. Res. 280, 1–14 (1996).

    Article  PubMed  CAS  Google Scholar 

  50. Delmas, C. et al. Comparative structural study of the mannosylated-lipoarabinomannans from Mycobacterium bovis BCG vaccine strains: characterization and localization of succinates. Glycobiology 7, 811–817 (1997).

    Article  PubMed  CAS  Google Scholar 

  51. Clore, G.M. & Gronenborn, A.M. NMR structure determination of proteins and protein complexes larger than 20 kDa. Curr. Opin. Chem. Biol. 2, 564–570 (1998).

    Article  PubMed  CAS  Google Scholar 

  52. Kelly, S.M. & Price, N.C. The use of circular dichroism in the investigation of protein structure and function. Curr. Protein Pept. Sci. 1, 349–384 (2000).

    Article  PubMed  CAS  Google Scholar 

  53. Remmele, R.L. Jr., Nightlinger, N.S., Srinivasan, S. & Gombotz, W.R. Interleukin-1 receptor (IL-1R) liquid formulation development using differential scanning calorimetry. Pharm. Res. 15, 200–208 (1998).

    Article  PubMed  CAS  Google Scholar 

  54. Krishnamurthy, R. & Manning, M.C. The stability factor: importance in formulation development. Curr. Pharm. Biotechnol. 3, 361–371 (2002).

    Article  PubMed  CAS  Google Scholar 

  55. Wyatt, P.J. Light scattering and the absolute characterization of macromolecules. Anal. Chim. Acta 272, 1–40 (1993).

    Article  CAS  Google Scholar 

  56. Bohidar, H.B. Light scattering and viscosity study of heat aggregation of insulin. Biopolymers 45, 1–8 (1998).

    Article  PubMed  CAS  Google Scholar 

  57. Laue, T.M. & Stafford, W.F., III. Modern applications of analytical ultracentrifugation. Annu. Rev. Biophys. Biomol. Struct. 28, 75–100 (1999).

    Article  PubMed  CAS  Google Scholar 

  58. Lebowitz, J., Lewis, M.S. & Schuck, P. Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci. 11, 2067–2079 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Philo, J.S. A method for directly fitting the time derivative of sedimentation velocity data and an alternative algorithm for calculating sedimentation coefficient distribution functions. Anal. Biochem. 279, 151–163 (2000).

    Article  PubMed  CAS  Google Scholar 

  60. Schuck, P., Perugini, M.A., Gonzales, N.R., Howlett, G.J. & Schubert, D. Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. Biophys. J. 82, 1096–1111 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Varley, P.G., Brown, A.J., Dawkes, H.C. & Burns, N.R. A case study and use of sedimentation equilibrium analytical ultracentrifugation as a tool for biopharmaceutical development. Eur. Biophys. J. 25, 437–443 (1997).

    Article  PubMed  CAS  Google Scholar 

  62. Avanzi, G.C. et al. M-07e human leukemic factor-dependent cell line provides a rapid and sensitive bioassay for the human cytokines GM-CSF and IL-3. J. Cell. Physiol. 145, 458–464 (1990).

    Article  PubMed  CAS  Google Scholar 

  63. Meager, A., Leung, H. & Woolley, J. Assays for tumour necrosis factor and related cytokines. J. Immunol. Methods 116, 1–17 (1989).

    Article  PubMed  CAS  Google Scholar 

  64. Sadick, M.D. et al. Kinase receptor activation (KIRA): a rapid and accurate alternative to end-point bioassays. J. Pharm. Biomed. Anal. 19, 883–891 (1999).

    Article  PubMed  CAS  Google Scholar 

  65. Cook, E.B. et al. Simultaneous measurement of six cytokines in a single sample of human tears using microparticle-based flow cytometry: allergics vs. non-allergics. J. Immunol. Methods 254, 109–118 (2001).

    Article  PubMed  CAS  Google Scholar 

  66. Spiro, A., Lowe, M. & Brown, D. A bead-based method for multiplexed identification and quantitation of DNA sequences using flow cytometry. Appl. Environ. Microbiol. 66, 4258–4265 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Johnson, L.R., McCormack, S.A., Yang, C.H., Pfeffer, S.R. & Pfeffer, L.M. EGF induces nuclear translocation of STAT2 without tyrosine phosphorylation in intestinal epithelial cells. Am. J. Physiol. 276, C419–C425 (1999).

    Article  PubMed  CAS  Google Scholar 

  68. Burrone, O.R., Kefford, R.F., Gilmore, D. & Milstein, C. Stimulation of HLA-A,B,C by IFN-alpha. The derivation of Molt 4 variants and the differential expression of HLA-A,B,C subsets. EMBO J. 4, 2855–2860 (1985).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Musco, M.L. et al. Comparison of flow cytometry and laser scanning cytometry for the intracellular evaluation of adenoviral infectivity and p53 protein expression in gene therapy. Cytometry 33, 290–296 (1998).

    Article  PubMed  CAS  Google Scholar 

  70. Grace, M.J. et al. The use of laser scanning cytometry to assess depth of penetration of adenovirus p53 gene therapy in human xenograft biopsies. Am. J. Pathol. 155, 1869–1878 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Chackerian, B., Lenz, P., Lowy, D.R. & Schiller, J.T. Determinants of autoantibody induction by conjugated papillomavirus virus-like particles. J. Immunol. 169, 6120–6126 (2002).

    Article  PubMed  CAS  Google Scholar 

  72. Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C. & Amigorena, S. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20, 621–667 (2002).

    Article  PubMed  CAS  Google Scholar 

  73. McHeyzer-Williams, M. et al. Helper T-cell-regulated B-cell immunity. Microbes Infect. 5, 205–212 (2003).

    Article  PubMed  CAS  Google Scholar 

  74. Schultes, B.C. & Whiteside, T.L. Monitoring of immune responses to CA125 with an IFN-gamma ELISPOT assay. J. Immunol. Methods 279, 1–15 (2003).

    Article  PubMed  CAS  Google Scholar 

  75. Barbosa, M.D.F.S., Tran, C-A. & Chirino, A.J. Testing MHC-binding epitopes: in vitro vaccination (IVV) (abstr. 9394) in 90th Meeting of the American Society of Immunologists. (American Society of Immunologists, Denver, Colorado, 2003).

    Google Scholar 

  76. Wadhwa, M., Bird, C., Dilger, P., Gaines-Das, R. & Thorpe, R. Strategies for detection, measurement and characterization of unwanted antibodies induced by therapeutic biologicals. J. Immunol. Methods 278, 1–17 (2003).

    Article  PubMed  CAS  Google Scholar 

  77. Mire-Sluis, A.R. et al. Recommendations for the design and optimization of immunoassays used in the detection of host antibodies against biotechnology products. J. Immunol. Methods 289, 1–16 (2004).

    Article  PubMed  CAS  Google Scholar 

  78. Lucas, C. et al. A sensitive radioimmunoprecipitation assay for the detection and quantitation of antibodies to the envelope glycoprotein gp120 of the human immunodeficiency virus (HIV-1). AIDS Res. Hum. Retroviruses 6, 357–370 (1990).

    Article  PubMed  CAS  Google Scholar 

  79. Takacs, M.A., Jacobs, S.J., Bordens, R.M. & Swanson, S.J. Detection and characterization of antibodies to PEG-IFN-alpha2b using surface plasmon resonance. J. Interferon Cytokine Res. 19, 781–789 (1999).

    Article  PubMed  CAS  Google Scholar 

  80. Swanson, S.J., Ferbas, J., Mayeux, P. & Casadevall, N. Evaluation of methods to detect and characterize antibodies against recombinant human erythropoietin. Nephron Clin. Pract. 96, c88–c95 (2004).

    Article  PubMed  CAS  Google Scholar 

  81. Rich, R.L. & Myszka, D.G. Advances in surface plasmon resonance biosensor analysis. Curr. Opin. Biotechnol. 11, 54–61 (2000).

    Article  PubMed  CAS  Google Scholar 

  82. Wierda, D., Smith, H.W. & Zwickl, C.M. Immunogenicity of biopharmaceuticals in laboratory animals. Toxicology 158, 71–74 (2001).

    Article  PubMed  CAS  Google Scholar 

  83. Soukharev, S. et al. Expression of factor VIII in recombinant and transgenic systems. Blood Cells Mol. Dis. 28, 234–248 (2002).

    Article  PubMed  Google Scholar 

  84. Reid, G.E. & McLuckey, S.A. 'Top down' protein characterization via tandem mass spectrometry. J. Mass Spectrom. 37, 663–675 (2002).

    Article  PubMed  CAS  Google Scholar 

  85. Harris, R.J. Processing of C-terminal lysine and arginine residues of proteins isolated from mammalian cell culture. J. Chromatogr. A. 705, 129–134 (1995).

    Article  PubMed  CAS  Google Scholar 

  86. Harris, R.J. et al. Identification of multiple sources of charge heterogeneity in a recombinant antibody. J. Chromatogr. B Biomed. Sci. Appl. 752, 233–245 (2001).

    Article  PubMed  CAS  Google Scholar 

  87. Lam, X.M., Yang, J.Y. & Cleland, J.L. Antioxidants for prevention of methionine oxidation in recombinant monoclonal antibody HER2. J. Pharm. Sci. 86, 1250–1255 (1997).

    Article  PubMed  CAS  Google Scholar 

  88. Abuchowski, A., McCoy, J.R., Palczuk, N.C., van Es, T. & Davis, F.F. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J. Biol. Chem. 252, 3582–3586 (1977).

    PubMed  CAS  Google Scholar 

  89. Katre, N.V. Immunogenicity of recombinant IL-2 modified by covalent attachment of polyethylene glycol. J. Immunol. 144, 209–213 (1990).

    PubMed  CAS  Google Scholar 

  90. Bailon, P. et al. Rational design of a potent, long-lasting form of interferon: a 40 kDa branched polyethylene glycol-conjugated interferon alpha-2a for the treatment of hepatitis C. Bioconjug. Chem. 12, 195–202 (2001).

    Article  PubMed  CAS  Google Scholar 

  91. Chapman, A.P. PEGylated antibodies and antibody fragments for improved therapy: a review. Adv. Drug Deliv. Rev. 54, 531–545 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Members of international regulatory authorities, industry and academia met at an FDA-sponsored meeting held at the National Institutes of Health, Bethesda, MD, June 10–13, 2003 to discuss how current analytical technologies are able to characterize biological products and contribute to the comparability process. The authors would like to thank fellow meeting participants Laura Bass, Marta Czupryn, William Egan, Darón Freedberg, Mike Grace, Martin Green, Reed Harris, Steven Indelicato, Eugene Koren, Stacey Ma, Mike Mulkerrin, Leland Paul, John Philo, Zorina Pitkin, Vytas Reipa, Amy Rosenberg, Joseph Siemiatkoski, Stephanie Simek, Steve Swanson, Guillermo Tous and Meenu Wadhwa for advice. The authors would also like to thank Bassil Dahiyat, John Desjarlais, Joyce Morrison and David Szymkowski for critical reading of the manuscript, and Marie Ary for valuable editorial advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur J Chirino.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirino, A., Mire-Sluis, A. Characterizing biological products and assessing comparability following manufacturing changes. Nat Biotechnol 22, 1383–1391 (2004). https://doi.org/10.1038/nbt1030

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1030

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing