Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

N-WASP deficiency reveals distinct pathways for cell surface projections and microbial actin-based motility

Abstract

The Wiskott–Aldrich syndrome protein (WASP) family of molecules integrates upstream signalling events with changes in the actin cytoskeleton. N-WASP has been implicated both in the formation of cell-surface projections (filopodia) required for cell movement and in the actin-based motility of intracellular pathogens. To examine N-WASP function we have used homologous recombination to inactivate the gene encoding murine N-WASP. Whereas N-WASP-deficient embryos survive beyond gastrulation and initiate organogenesis, they have marked developmental delay and die before embryonic day 12. N-WASP is not required for the actin-based movement of the intracellular pathogen Listeria but is absolutely required for the motility of Shigella and vaccinia virus. Despite these distinct defects in bacterial and viral motility, N-WASP-deficient fibroblasts spread by using lamellipodia and can protrude filopodia. These results imply a crucial and non-redundant role for N-WASP in murine embryogenesis and in the actin-based motility of certain pathogens but not in the general formation of actin-containing structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted disruption of N-WASP by homologous recombination.
Figure 2: N-WASP deficiency results in neural-tube defects and developmental delay.
Figure 3: The actin-based motility of Shigella flexneri and vaccinia, but not that of Listeria, requires N-WASP.
Figure 4: WASP compensates for N-WASP in the actin-based motility of vaccinia but not that of Shigella.
Figure 5: N-WASP−/− ES-FLCs form lamellipodia and filopodia in response to stimulation with serum and with PDGF.
Figure 6: Normal serum-induced and growth-factor-induced actin assembly and barbed-end nucleation in N-WASP-deficient SV-FLCs.

Similar content being viewed by others

References

  1. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  Google Scholar 

  2. Miki, H., Suetsugu, S. & Takenawa, T. WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J. 17, 6932–6941 (1998).

    Article  CAS  Google Scholar 

  3. Miki, H., Sasaki, T., Takai, Y. & Takenawa, T. Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391, 93–96 (1998).

    Article  CAS  Google Scholar 

  4. Castellano, F. et al. Inducible recruitment of Cdc42 or WASP to a cell-surface receptor triggers actin polymerization and filopodium formation. Curr. Biol. 9, 351–360 (1999).

    Article  CAS  Google Scholar 

  5. Derry, J. M., Ochs, H. D. & Francke, U. Isolation of a novel gene mutated in Wiskott–Aldrich syndrome. Cell 78, 635–644 (1994).

    Article  CAS  Google Scholar 

  6. Miki, H., Miura, K. & Takenawa, T. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J. 15, 5326–5335 (1996).

    Article  Google Scholar 

  7. Suetsugu, S., Miki, H. & Takenawa, T. Identification of two human WAVE/SCAR homologues as general actin regulatory molecules which associate wth the Arp2/3 complex. Biochem. Biophys. Res. Commun. 260, 296–302 (1999).

    Article  CAS  Google Scholar 

  8. Bear, J. E., Rawls, J. F. & Saxe, C. L., 3rd. SCAR, a WASP-related protein, isolated as a suppressor of receptor defects in late Dictyostelium development. J. Cell Biol. 142, 1325–1335 (1998).

    Article  CAS  Google Scholar 

  9. Machesky, L. M. & Insall, R. H. Scar1 and the related Wiskott–Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8, 1347–1356 (1998).

    Article  CAS  Google Scholar 

  10. Yarar, D., To, W., Abo, A. & Welch, M. D. The Wiskott–Aldrich syndrome protein directs actin-based motility by stimulating actin nucleation with the Arp2/3 complex. Curr. Biol. 9, 555–558 (1999).

    Article  CAS  Google Scholar 

  11. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).

    Article  CAS  Google Scholar 

  12. Machesky, L. M. & Insall, R. H. Signaling to actin dynamics. J. Cell Biol. 146, 267–272 (1999).

    Article  CAS  Google Scholar 

  13. Higgs, H. N. & Pollard, T. D. Regulation of actin polymerization by Arp2/3 complex and WASp/Scar proteins. J. Biol. Chem. 274, 32531–32534 (1999).

    Article  CAS  Google Scholar 

  14. Winter, D., Lechler, T. & Li, R. Activation of the yeast Arp2/3 complex by Bee1p, a WASP-family protein. Curr. Biol. 9, 501–504 (1999).

    Article  CAS  Google Scholar 

  15. Blanchoin, L. et al. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature 404, 1007–1011 (2000).

    Article  CAS  Google Scholar 

  16. Kim, A. S., Kakalis, L. T., Abdul-Manan, N., Liu, G. A. & Rosen, M. K. Autoinhibition and activation mechanisms of the Wiskott–Aldrich syndrome protein. Nature 404, 151–158 (2000).

    Article  CAS  Google Scholar 

  17. Higgs, H. N. & Pollard, T. D. Activation by Cdc42 and PIP2 of Wiskott–Aldrich syndrome protein (WASp) stimulates actin nucleation by Arp2/3 complex. J. Cell Biol. 150, 1311–1320 (2000).

    Article  CAS  Google Scholar 

  18. Rohatgi, R., Ho, H. Y. & Kirschner, M. W. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4,5-bisphosphate. J. Cell Biol. 150, 1299–1310 (2000).

    Article  CAS  Google Scholar 

  19. Prehoda, K. E., Scott, J. A., Dyche Mullins, R. & Lim, W. A. Integration of multiple signals through cooperative regulation of the N-WASP–Arp2/3 complex. Science 290, 801–806 (2000).

    Article  CAS  Google Scholar 

  20. Takenawa, T. & Miki, H. WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J. Cell Sci. 114, 1801–1809 (2001).

    CAS  PubMed  Google Scholar 

  21. Finlay, B. B. & Cossart, P. Exploitation of mammalian host cell functions by bacterial pathogens. Science 276, 718–725 (1997).

    Article  CAS  Google Scholar 

  22. Dramsi, S. & Cossart, P. Intracellular pathogens and the actin cytoskeleton. Annu. Rev. Cell. Dev. Biol. 14, 137–166 (1998).

    Article  CAS  Google Scholar 

  23. Suzuki, T., Miki, H., Takenawa, T. & Sasakawa, C. Neural Wiskott–Aldrich syndrome protein is implicated in the actin-based motility of Shigella flexneri. EMBO J. 17, 2767–2776 (1998).

    Article  CAS  Google Scholar 

  24. Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M. F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616 (1999).

    Article  CAS  Google Scholar 

  25. Egile, C. et al. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J. Cell Biol. 146, 1319–1332 (1999).

    Article  CAS  Google Scholar 

  26. Frischknecht, F. et al. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401, 926–929 (1999).

    Article  CAS  Google Scholar 

  27. Bernardini, M. L., Mounier, J., d'Hauteville, H., Coquis-Rondon, M. & Sansonetti, P. J. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc. Natl Acad. Sci. USA 86, 3867–3871 (1989).

    Article  CAS  Google Scholar 

  28. Goldberg, M. B., Barzu, O., Parsot, C. & Sansonetti, P. J. Unipolar localization and ATPase activity of IcsA, a Shigella flexneri protein involved in intracellular movement. J. Bacteriol. 175, 2189–2196 (1993).

    Article  CAS  Google Scholar 

  29. Welch, M. D., Rosenblatt, J., Skoble, J., Portnoy, D. A. & Mitchison, T. J. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281, 105–108 (1998).

    Article  CAS  Google Scholar 

  30. Welch, M. D., Iwamatsu, A. & Mitchison, T. J. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385, 265–269 (1997).

    Article  CAS  Google Scholar 

  31. May, R. C. et al. The Arp2/3 complex is essential for the actin-based motility of Listeria monocytogenes. Curr. Biol. 9, 759–762 (1999).

    Article  CAS  Google Scholar 

  32. Moreau, V. et al. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nature Cell Biol. 2, 441–448 (2000).

    Article  CAS  Google Scholar 

  33. Frischknecht, F. & Way, M. Surfing pathogens and the lessons learned for actin polymerization. Trends Cell. Biol. 11, 30–38 (2001).

    Article  CAS  Google Scholar 

  34. Sugihara, K. et al. Rac1 is required for the formation of three germ layers during gastrulation. Oncogene 17, 3427–3433 (1998).

    Article  CAS  Google Scholar 

  35. Chen, F. et al. Cdc42 is required for PIP2-induced actin polymerization and early development but not for cell viability. Curr. Biol. 10, 758–765 (2000).

    Article  CAS  Google Scholar 

  36. Takayama, H., Tanigawa, T., Tanaka, Y. & Kimura, G. Induction of fibronectin expression, actin cable formation, and entry into S phase following reexpression of T antigen in mouse macrophages transformed by the tsA640 mutant of SV40. J. Cell. Physiol. 128, 271–278 (1986).

    Article  CAS  Google Scholar 

  37. Ulrich, R. G. & Quinlan, D. C. Cell surface and cytoskeletal interactions in a temperature-sensitive strain of SV40-transformed mouse fibroblasts. Cell Motil. 3, 553–565 (1983).

    Article  CAS  Google Scholar 

  38. Kozma, R., Ahmed, S., Best, A. & Lim, L. The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol. Cell. Biol. 15, 1942–1952 (1995).

    Article  CAS  Google Scholar 

  39. Ramesh, N., Anton, I. M., Hartwig, J. H. & Geha, R. S. WIP, a protein associated with Wiskott–Aldrich syndrome protein, induces actin polymerization and redistribution in lymphoid cells. Proc. Natl. Acad. Sci. USA 94, 14671–14676 (1997).

    Article  CAS  Google Scholar 

  40. Anton, I. M., Lu, W., Mayer, B. J., Ramesh, N. & Geha, R. S. The Wiskott–Aldrich syndrome protein-interacting protein (WIP) binds to the adaptor protein Nck. J. Biol. Chem. 273, 20992–20995 (1998).

    Article  CAS  Google Scholar 

  41. Martinez-Quiles, N. et al. WIP regulates N-WASP-mediated actin polymerization and filopodium formation. Nature Cell Biol. 3, 484–491 (2001).

    Article  CAS  Google Scholar 

  42. Lasko, M. et al. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. USA 93, 5860–5865 (1996).

    Article  Google Scholar 

  43. Snapper, S. B. et al. Wiskott–Aldrich syndrome protein-deficient mice reveal a role for WASP in T but not B cell activation. Immunity 9, 81–91 (1998).

    Article  CAS  Google Scholar 

  44. Fukuoka, M., Miki, H. & Takenawa, T. Identification of N-WASP homologs in human and rat brain. Gene 196, 43–48 (1997).

    Article  CAS  Google Scholar 

  45. Klein, C., Bueler, H. & Mulligan, R. C. Comparative analysis of genetically modified dendritic cells and tumor cells as therapeutic cancer vaccines. J. Exp. Med. 191, 1699–1708 (2000).

    Article  CAS  Google Scholar 

  46. Ory, D. S., Neugeboren, B. A. & Mulligan, R. C. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc. Natl Acad. Sci. USA 93, 11400–11406 (1996).

    Article  CAS  Google Scholar 

  47. Hed, J. Methods for distinguishing ingested from adhering particles. Methods Enzymol. 132, 198–204 (1986).

    Article  CAS  Google Scholar 

  48. Rottger, S., Frischknecht, F., Reckmann, I., Smith, G. L. & Way, M. Interactions between vaccinia virus IEV membrane proteins and their roles in IEV assembly and actin tail formation. J. Virol. 73, 2863–2875 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Oaks, E. V., Wingfield, M. E. & Formal, S. B. Plaque formation by virulent Shigella flexneri. Infect. Immun. 48, 124–129 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hartwig, J. et al. Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 82, 643–653 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Way, H. Miki, T. Takenawa, R. Rohatgi, M. Kirshner and R. Xavier for reagents; Y. Fujiwara and S. Orkin for assistance with in situ hybridization experiments; Y. Ohta for microinjection expertise; M. Charles for assistance in Shigella infections; W. Swat and F. Chen for critical suggestions on the manuscript; and members of the Snapper, Alt and Rosen laboratories for continued support. This work was supported by grants from the National Institutes of Health (NIH) (to S.B.S., F.S.R., S.M.T. and F.W.A.), the Howard Hughes Medical Institute (to F.W.A.), the Massachusetts General Hospital NIH Center for the Study of Inflammatory Bowel Disease (to S.B.S.), and the 2nd Department of Internal Medicine, Nagasaki University School of Medicine (to F.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott B. Snapper.

Supplementary information

Supplementary figures

Figure S1 Nck and WIP are recruited to sites of actin assembly in Shigella- and vaccinia-infected SV-FLCs. (PDF 175 kb)

Figure S2 Neither Nck nor WIP is recruited to Shigella and vaccinia in the absence of N-WASP.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snapper, S., Takeshima, F., Antón, I. et al. N-WASP deficiency reveals distinct pathways for cell surface projections and microbial actin-based motility. Nat Cell Biol 3, 897–904 (2001). https://doi.org/10.1038/ncb1001-897

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1001-897

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing