Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation

A Corrigendum to this article was published on 01 September 2002

Abstract

HER-2/neu amplification or overexpression can make cancer cells resistant to apoptosis and promotes their growth. p53 is crucial in regulating cell growth and apoptosis, and is often mutated or deleted in many types of tumour. Moreover, many tumours with a wild-type gene for p53 do not have normal p53 function, suggesting that some oncogenic signals suppress the function of p53. In this study, we show that HER-2/neu-mediated resistance to DNA-damaging agents requires the activation of Akt, which enhances MDM2-mediated ubiquitination and degradation of p53. Akt physically associates with MDM2 and phosphorylates it at Ser166 and Ser186. Phosphorylation of MDM2 enhances its nuclear localization and its interaction with p300, and inhibits its interaction with p19ARF, thus increasing p53 degradation. Our study indicates that blocking the Akt pathway mediated by HER-2/neu would increase the cytotoxic effect of DNA-damaging drugs in tumour cells with wild-type p53.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Akt pathway is required for HER-2/neu-mediated chemoresistance to etoposide.
Figure 2: Activation of Akt induced p53 ubiquitination and degradation.
Figure 3: Akt interacts with MDM2 and phosphorylates Ser166 and Ser186.
Figure 4: Akt affects the cellular localization of endogenous MDM2.
Figure 5: Akt affects the subcellular localization of MDM2.
Figure 6: HER-2/neu activates Akt and induces nuclear localization of MDM2 in breast tumour tissues.
Figure 7: Phosphorylated MDM2 binds differently to p300 and p19ARF.
Figure 8: Nuclear localization of wild-type and mutant MDM2 is not affected by the presence of p14ARF.
Figure 9: Sensitization of etoposide-induced apoptosis by DN-Akt can be suppressed by nuclear MDM2 (S166,186DD).

Similar content being viewed by others

References

  1. Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).

    Article  CAS  Google Scholar 

  2. Slamon, D. J. et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244, 707–712 (1989).

    Article  CAS  Google Scholar 

  3. Yu, D. & Hung, M.-C. in DNA Alterations in Cancer (ed. Ehrlich, M.) Ch. 21 (Eaton, Natick, Massachusetts, 2000).

    Google Scholar 

  4. Zhou, B. P. et al. HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-κB pathways. J. Biol. Chem. 275, 8027–8031 (2000).

    Article  CAS  Google Scholar 

  5. Zhou, B. P. et al. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nature Cell Biol. 3, 245–252 (2001).

    Article  CAS  Google Scholar 

  6. Downward, J. Mechanisms and consequences of activation of protein kinase B/Akt. Curr. Opin. Cell Biol. 10, 262–267 (1998).

    Article  CAS  Google Scholar 

  7. Datta, S. R., Brunet, A. & Greenberg, M. E. Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927 (1999).

    Article  CAS  Google Scholar 

  8. Peso, L. D., Gonzalez-Garcia, M., Page, C., Herrera, R. & Nunez, G. Interleukin-3-induced phosphorylation of bad through the protein kinase Akt. Science 278, 687–689 (1997).

    Article  Google Scholar 

  9. Cardone, M. H. et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 282, 1318–1321 (1998).

    Article  CAS  Google Scholar 

  10. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  Google Scholar 

  11. Kops, G. J. P. L. et al. Direct control of the forkhead transcription factor AFX by protein kinase B. Nature 398, 630–634 (1999).

    Article  CAS  Google Scholar 

  12. Ozes, O. N. et al. NF-κB activation by tumor necrosis factor requires the Akt serine–threonine kinase. Nature 401, 82–85 (1999).

    Article  CAS  Google Scholar 

  13. Sabbatini, P. & McCormick, F. Phosphoinositide 3-OH kinase (PI3K) and PKB/Akt delay the onset of p53-mediated, transcriptionally dependent apoptosis. J. Biol. Chem. 274, 24263–24269 (1999).

    Article  CAS  Google Scholar 

  14. Woods, D. B. & Vousden, K. H. Regulation of p53 function. Exp. Cell Res. 264, 56–66 (2001).

    Article  CAS  Google Scholar 

  15. Sherr, C. J. & Weber, J. D. The ARF/p53 pathway. Curr. Opin. Genet. Dev. 10, 94–99 (2000).

    Article  CAS  Google Scholar 

  16. Vousden, K. H. p53: death star. Cell 103, 691–694 (2000).

    Article  CAS  Google Scholar 

  17. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  Google Scholar 

  18. Hupp, T. R., Lane, D. P. & Ball, K. L. Strategies for manipulating the p53 pathway in the treatment of human cancer. Biochem. J. 352, 1–17 (2000).

    Article  CAS  Google Scholar 

  19. Caspari, T. Checkpoints: how to activate p53. Curr. Biol. 10, R315–R317 (2000).

    Article  CAS  Google Scholar 

  20. Momand, J., Wu, H.-H. & Dasgupta, G. MDM2—master regulator of the p53 tumor suppressor protein. Gene 242, 15–29 (2000).

    Article  CAS  Google Scholar 

  21. Colman, M. S., Afshari, C. A. & Barrett, J. C. Regulation of p53 stability and activity in response to genotoxic stress. Mut. Res. 462, 179–188 (2000).

    Article  CAS  Google Scholar 

  22. Lill, N. L., Grossman, S. R., Ginsberg, D., DeCaprio, J. & Livingston, D. M. Binding and modulation of p53 by p300/CBP coactivators. Nature 387, 823–827 (1997).

    Article  CAS  Google Scholar 

  23. Grossman, S. R. et al. p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol. Cell 2, 405–415 (1998).

    Article  CAS  Google Scholar 

  24. Pomerantz, J. et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and nuetralizes MDM2's inhibition of p53. Cell 92, 713–723 (1998).

    Article  CAS  Google Scholar 

  25. Zhang, Y., Xiong, Y. & Yarbrough, W. G. ARF promotes MDM2 degradation and stabilizes p53: ARF-Ink4a locus deletion impairs both Rb and p53 tumor suppressor pathways. Cell 92, 725–734 (1998).

    Article  CAS  Google Scholar 

  26. Sherr, C. J. The Pezcoller Lecture: cancer cell cycles revisited. Cancer Res. 60, 3689–3695 (2000).

    CAS  PubMed  Google Scholar 

  27. Honda, R. & Yasuda, H. Association of p19ARF with MDM2 inhibits ubiquitin ligase activity of MDM2 for tumor suppressor p53. EMBO J. 18, 22–27 (1999).

    Article  CAS  Google Scholar 

  28. Weber, J. D., Taylor, L. J., Roussel, M. F., Sherr, C. J. & Bar-Sagi, D. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell Biol. 1, 20–26 (1999).

    Article  CAS  Google Scholar 

  29. Zhang, Y. & Xiong, Y. Mutation in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol. Cell 3, 579–591 (1999).

    Article  CAS  Google Scholar 

  30. Yu, D. & Hung, M.-C. Role of erbB2 in breast cancer chemosensitivity. BioEssays 22, 673–680 (2000).

    Article  CAS  Google Scholar 

  31. Tsai, C. M. et al. Enhanced chemoresistance by elevation of p185 levels in HER-2/neu-transfected human lung cancer cells. J. Natl Cancer Inst. 87, 682–684 (1995).

    Article  CAS  Google Scholar 

  32. Zhou, B.-B. S. & Elledge, S. J. The DNA damage response: putting checkings in perspective. Nature 408, 433–439 (2000).

    Article  CAS  Google Scholar 

  33. Freedman, D. A. & Levine, A. J. Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol. Cell. Biol. 18, 7288–7293 (1998).

    Article  CAS  Google Scholar 

  34. Khosravi, R. et al. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc. Natl Acad. Sci. USA 96, 14973–14977 (1999).

    Article  CAS  Google Scholar 

  35. Lianos, S., Clark, P. A., Rowe, J. & Peters, G. Stabilization of p53 by p14ARF without relocation of MDM2 to the nucleolus. Nature Cell Biol. 3, 445–452 (2001).

    Article  Google Scholar 

  36. Mayo, L. D. & Donner, D. B. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc. Natl Acad. Sci. USA 98, 11598–11603 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Lozano for kindly providing p53−/− MEF and p53−/−, MDM2−/− MEF cells. This work was supported by grants CA 58880, CA 77858 and CA 78633, by a SPORE grant in ovarian cancer (CA 83639) (to M.-C.H.), and by the Nellie Connally Breast Cancer Research Fund at the M. D. Anderson Cancer Center (to M.-C.H.). B.P.Z. and Y.L. are recipients of postdoctoral fellowships from US Department of Defense Breast Cancer Research Training Grant DAMD17-99-1-9264 and US Department of Defense Breast Cancer Research Program (DAMD17-01-0300), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mien-Chie Hung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, B., Liao, Y., Xia, W. et al. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3, 973–982 (2001). https://doi.org/10.1038/ncb1101-973

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1101-973

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing