Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Myosin-X provides a motor-based link between integrins and the cytoskeleton

Abstract

Unconventional myosins are actin-based motors with a growing number of attributed functions1. Interestingly, it has been proposed that integrins are transported by unidentified myosins to facilitate cellular remodelling2. Here we present an interaction between the unconventional myosin-X (Myo10) FERM (band 4.1/ezrin/radixin/moesin) domain and an NPXY motif within β-integrin cytoplasmic domains. Importantly, knock-down of Myo10 by short interfering RNA impaired integrin function in cell adhesion, whereas overexpression of Myo10 stimulated the formation and elongation of filopodia in an integrin-dependent manner and relocalized integrins together with Myo10 to the tips of filopodia. This integrin relocalization and filopodia elongation did not occur with Myo10 mutants deficient in integrin binding or with a β1-integrin point mutant deficient in Myo10 binding. Taken together, these results indicate that Myo10-mediated relocalization of integrins might serve to form adhesive structures and thereby promote filopodial extension.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Myo10 interacts with integrin β-subunit cytoplasmic domains.
Figure 2: Lobes F2 and F3 of Myo10-FERM domain interact with a conserved NPXY motif of integrin cytoplasmic tails.
Figure 3: Myo10 affects integrin-mediated cell adhesion and stimulates filopodia formation in an integrin-dependent manner.
Figure 4: Myo10 localizes integrins into filopodia dependent on the Myo10 to integrin interaction.
Figure 5: Myo10-mediated filopodia elongation requires the integrin-binding FERM regions of Myo10 and the Myo10-binding capacity of integrins.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Berg, J.S., Powell, B.C. & Cheney, R.E. A millennial myosin census. Mol. Biol. Cell. 12, 780–794 (2001).

    Article  CAS  Google Scholar 

  2. Vuori, K. & Ruoslahti, E. Connections count in cell migration. Nature Cell Biol. 1, E85–E87 (1999).

    Article  CAS  Google Scholar 

  3. Grabham, P.W., Foley, M., Umeojiako, A. & Goldberg, D.J. Nerve growth factor stimulates coupling of β1 integrin to distinct transport mechanisms in the filopodia of growth cones. J. Cell Sci. 113 3003–3012 (2000).

    CAS  PubMed  Google Scholar 

  4. Mermall, V., Post, P.L. & Mooseker, M.S. Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 279, 527–533 (1998).

    Article  CAS  Google Scholar 

  5. Berg, J.S., Derfler, B.H., Pennisi, C.M., Corey, D.P. & Cheney, R.E. Myosin-X, a novel myosin with pleckstrin homology domains, associates with regions of dynamic actin. J. Cell Sci. 113, 3439–3451 (2000).

    CAS  Google Scholar 

  6. Berg, J.S. & Cheney, R.E. Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nature Cell Biol. 4, 246–250 (2002).

    Article  CAS  Google Scholar 

  7. Zhang, H., Li, Z., Viklund, E.K. & Strömblad, S. P21-activated kinase 4 interacts with integrin αvβ5 and regulates αvβ5-mediated cell migration. J. Cell Biol. 158, 1287–1297 (2002).

    Article  CAS  Google Scholar 

  8. Mangeat, P., Roy, C. & Martin, M. ERM proteins in cell adhesion and membrane dynamics. Trends Cell Biol. 9, 187–192 (1999).

    Article  CAS  Google Scholar 

  9. Ylänne, J. Conserved functions of the cytoplasmic domains of integrin β subunits. Frontiers Biosci. 3, 877–886 (1998).

    Article  Google Scholar 

  10. Laflamme, S.E., Homan, S.M., Bodeau, A.L. & Mastrangelo, A.M. Integrin cytoplasmic domains as connectors to the cell's signal transduction apparatus. Matrix Biol. 16, 153–163 (1997).

    Article  CAS  Google Scholar 

  11. Garcia-Alvarez, B. et al. Structural determinants of integrin recognition by talin. Mol. Cell. 11, 49–58 (2003).

    Article  CAS  Google Scholar 

  12. Filardo, E.J., Brooks, P.C., Deming, S.L., Damsky, C. & Cheresh, D.A. Requirement of the NPXY motif in the integrin β3 subunit cytoplasmic tail for melanoma cell migration in vitro and in vivo. J. Cell Biol. 130 441–450 (1995).

    Article  CAS  Google Scholar 

  13. Pearson, M.A., Reczek, D., Bretscher, A. & Karplus, P.A. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 101, 259–270 (2000).

    Article  CAS  Google Scholar 

  14. Calderwood, D.A. et al. The phosphotyrosine binding-like domain of talin activates integrins. J. Biol. Chem. 277, 21749–21758 (2002).

    Article  CAS  Google Scholar 

  15. Calderwood, D.A. et al. Integrin β cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. Proc. Natl Acad. Sci. USA 100, 2272–2277 (2003).

    Article  CAS  Google Scholar 

  16. Forman-Kay, J.D. & Pawson, T. Diversity in protein recognition by PTB domains. Curr. Opin. Struct. Biol. 9, 690–695 (1999).

    Article  CAS  Google Scholar 

  17. Calderwood, D.A. et al. The talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation. J. Biol. Chem. 274, 28071–28074 (1999).

    Article  CAS  Google Scholar 

  18. Steketee, M., Balazovich, K. & Tosney, K.W. Filopodial initiation and a novel filament-organizing center, the focal ring. Mol. Biol. Cell 12, 2378–2395 (2001).

    Article  CAS  Google Scholar 

  19. Otey, C.A., Pavalko, F.M. & Burridge, K. An interaction between α-actinin and the β1 integrin subunit in vitro. J. Cell Biol. 111 721–729 (1990).

    Article  CAS  Google Scholar 

  20. Horwitz, A., Duggan, K., Buck, C., Beckerle, M.C. & Burridge, K. Interaction of plasma membrane fibronectin receptor with talin—a transmembrane linkage. Nature 320, 531–533 (1986).

    Article  CAS  Google Scholar 

  21. Pankov, R. et al. Specific β1integrin site selectively regulates Akt/protein kinase B signaling via local activation of protein phosphatase 2A. J. Biol. Chem. 278, 18671–1881 (2003).

    Article  CAS  Google Scholar 

  22. Small, J.V., Stradal, T., Vignal, E. & Rottner, K. The lamellipodium: where motility begins. Trends Cell Biol. 12, 112–120 (2002).

    Article  CAS  Google Scholar 

  23. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

    Article  CAS  Google Scholar 

  24. Strömblad, S. & Cheresh, D.A. Cell adhesion and angiogenesis. Trends Cell Biol. 6, 462–468 (1996).

    Article  Google Scholar 

  25. Soldi, R., Mitola, S., Strasly, M., Defilippi, P., Tarone, G. & Bussolino, F. Role of αvβ3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J. 18, 882–892 (1999).

    Article  CAS  Google Scholar 

  26. Tuxworth, R.I. et al. A role of myosin VII in dynamic cell adhesion. Curr. Biol. 11, 318–329 (2001).

    Article  CAS  Google Scholar 

  27. Liu, X. et al. Mutations in the myosin VIIA gene cause non-syndromic recessive deafness. Nature Genet. 16, 188–190 (1997).

    Article  CAS  Google Scholar 

  28. Wang, A. et al. Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3. Science 280, 1447–1451 (1998).

    Article  CAS  Google Scholar 

  29. Littlewood-Evans, A. & Müller, U. Stereocilia defects in the sensory hair cells of the inner ear in mice deficient in integrin α8β1 . Nature Genet. 24, 424–428 (2000).

    Article  CAS  Google Scholar 

  30. Jenkins, A.L. et al. Tyrosine phosphorylation of the β3 cytoplasmic domain mediates integrin–cytoskeletal interactions. J. Biol. Chem. 273, 13878–13885 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Ruoslahti for providing the integrin β1 and β5 cDNA, K. M. Yamada and R. Pankov for providing GD25, GD25-β1-wt and GD25-β1-W775A cells, R. Agami for the pSuper vector, and A. Hofman, E.-K. Viklund and P. Lennartsson for technical assistance. We also thank the Center for Infectious Medicine for use of their confocal microscope supported by the Swedish Strategic Foundation. This study was supported by grants to S.S. from the Swedish Cancer Society and the Swedish Research Council, to H.Z. from the Swedish Society of Medicine and to R.E.C. from NIH (no. DC03299). H.Z. was supported by the Wenner-Gren Foundation in Sweden. S.S. holds a senior scientist position from the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongquan Zhang or Staffan Strömblad.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Fig. 1, Fig. 2, Fig. 3 and Fig. 4 (PDF 482 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Berg, J., Li, Z. et al. Myosin-X provides a motor-based link between integrins and the cytoskeleton. Nat Cell Biol 6, 523–531 (2004). https://doi.org/10.1038/ncb1136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1136

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing