Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel and evolutionarily conserved PtdIns(3,4,5)P3-binding domain is necessary for DOCK180 signalling

Abstract

The evolutionarily conserved DOCK180 protein has an indispensable role in cell migration by functioning as an exchange factor for Rac GTPase via its DOCK homology region (DHR)-2 domain. We report here that the conserved DHR-1 domain also has an important signalling role. A form of DOCK180 that lacks DHR-1 fails to promote cell migration, although it is capable of inducing Rac GTP-loading. The DHR-1 domain interacts with PtdIns(3,4,5)P3 in vitro and in vivo, and mediates the DOCK180 signalling complex localization at sites of PtdIns(3,4,5)P3 accumulation in the cell's leading edge. A form of DOCK180 in which the DHR-1 domain has been replaced by a canonical PtdIns(3,4,5)P3-binding pleckstrin homology domain is fully functional at inducing cell elongation and migration, suggesting that the main function of DHR-1 is to bind PtdIns(3,4,5)P3. These results demonstrate that DOCK180, via its DHR-1 and DHR-2 domains, couples PtdIns(3,4,5)P3 signalling to Rac GTP-loading, which is essential for directional cell movement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The DHR-1 domain is required for DOCK180-mediated cell elongation and motility.
Figure 2: The DHR-1 domain is required for cell spreading.
Figure 3: Intact GTP-loading of Rac and coupling to ELMO1 and CrkII by the DHR-1 mutant of DOCK180.
Figure 4: The DHR-1 domain of DOCK180 has lipid-binding activity towards phosphoinositides in vitro.
Figure 5: The DHR-1 domain shows lipid-binding activity in vivo.
Figure 6: Generation of PtdIns(3,4,5)P3 is necessary for DOCK180-induced cell elongation and migration.
Figure 7: The PH domain of BMX/Etk can functionally replace the DHR-1 domain in DOCK180.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Merlot, S. & Firtel, R. A. Leading the way: directional sensing through phosphatidylinositol 3-kinase and other signaling pathways. J. Cell Sci. 116, 3471–3478 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Postma, M., Bosgraaf, L., Loovers, H. M. & Van Haastert, P. J. Chemotaxis: signalling modules join hands at front and tail. EMBO Rep. 5, 35–40 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Funamoto, S., Meili, R., Lee, S., Parry, L. & Firtel, R. A. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109, 611–623 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, F. et al. Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nature Cell Biol. 4, 513–518 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Weiner, O. D. et al. A PtdInsP(3)- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nature Cell Biol. 4, 509–513 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Iijima, M. & Devreotes, P. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 109, 599–610 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Wennerberg, K. & Der, C. J. Rho-family GTPases: it's not only Rac and Rho (and I like it). J. Cell Sci. 117, 1301–1312 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Takenawa, T. & Miki, H. WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J. Cell Sci. 114, 1801–1809 (2001).

    CAS  PubMed  Google Scholar 

  9. Hasegawa, H. et al. DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol. Cell Biol. 16, 1770–1776 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Duchek, P., Somogyi, K., Jekely, G., Beccari, S. & Rorth, P. Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107, 17–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Erickson, M. R., Galletta, B. J. & Abmayr, S. M. Drosophila myoblast city encodes a conserved protein that is essential for myoblast fusion, dorsal closure, and cytoskeletal organization. J. Cell Biol. 138, 589–603 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nolan, K. M. et al. Myoblast city, the Drosophila homolog of DOCK180/CED-5, is required in a Rac signaling pathway utilized for multiple developmental processes. Genes Dev. 12, 3337–3342 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rushton, E., Drysdale, R., Abmayr, S. M., Michelson, A. M. & Bate, M. Mutations in a novel gene, myoblast city, provide evidence in support of the founder cell hypothesis for Drosophila muscle development. Development 121, 1979–1988 (1995).

    CAS  PubMed  Google Scholar 

  14. Reddien, P. W. & Horvitz, H. R. The engulfment process of programmed cell death in Caenorhabditis elegans. Annu. Rev. Cell Dev. Biol. 20, 193–221 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Gumienny, T. L. et al. CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 107, 27–41 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Wu, Y. C., Tsai, M. C., Cheng, L. C., Chou, C. J. & Weng, N. Y. C. elegans CED-12 acts in the conserved crkII/DOCK180/Rac pathway to control cell migration and cell corpse engulfment. Dev. Cell 1, 491–502 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Zhou, Z., Caron, E., Hartwieg, E., Hall, A. & Horvitz, H. R. The C. elegans PH domain protein CED-12 regulates cytoskeletal reorganization via a Rho/Rac GTPase signaling pathway. Dev. Cell 1, 477–489 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Cheresh, D. A., Leng, J. & Klemke, R. L. Regulation of cell contraction and membrane ruffling by distinct signals in migratory cells. J. Cell Biol. 146, 1107–1116 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dolfi, F. et al. The adaptor protein Crk connects multiple cellular stimuli to the JNK signaling pathway. Proc. Natl Acad. Sci. USA 95, 15394–15399 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kiyokawa, E. et al. Activation of Rac1 by a Crk SH3-binding protein, DOCK180. Genes Dev. 12, 3331–3336 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cote, J. F. & Vuori, K. Identification of an evolutionarily conserved superfamily of DOCK180-related proteins with guanine nucleotide exchange activity. J. Cell Sci. 115, 4901–4913 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Meller, N., Irani-Tehrani, M., Kiosses, W. B., del Pozo, M. A. & Schwartz, M. A. Zizimin1, a novel Cdc42 activator, reveals a new GEF domain for Rho proteins. Nature Cell Biol. 4, 639–647 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Brugnera, E. et al. Unconventional Rac-GEF activity is mediated through the Dock180–ELMO complex. Nature Cell Biol. 4, 574–582 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Grimsley, C. M. et al. Dock180 and ELMO1 proteins cooperate to promote evolutionarily conserved Rac-dependent cell migration. J. Biol. Chem. 279, 6087–6097 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Nalefski, E. A. & Falke, J. J. The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci. 5, 2375–2390 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Catz, S. D., Johnson, J. L. & Babior, B. M. The C2A domain of JFC1 binds to 3′-phosphorylated phosphoinositides and directs plasma membrane association in living cells. Proc. Natl Acad. Sci. USA 99, 11652–11657 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McAdara Berkowitz, J. K. et al. JFC1, a novel tandem C2 domain-containing protein associated with the leukocyte NADPH oxidase. J. Biol. Chem. 276, 18855–18862 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Dunn, R., Klos, D. A., Adler, A. S. & Hicke, L. The C2 domain of the Rsp5 ubiquitin ligase binds membrane phosphoinositides and directs ubiquitination of endosomal cargo. J. Cell Biol. 165, 135–144 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shirai, T. et al. Specific detection of phosphatidylinositol 3,4,5-trisphosphate binding proteins by the PIP3 analogue beads: an application for rapid purification of the PIP3 binding proteins. Biochim. Biophys. Acta 1402, 292–302 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Hayashi, I., Vuori, K. & Liddington, R. C. The focal adhesion targeting (FAT) region of focal adhesion kinase is a four-helix bundle that binds paxillin. Nature Struct. Biol. 9, 101–106 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Dowler, S., Kular, G. & Alessi, D. R. Protein lipid overlay assay. Sci. STKE 2002, PL6 (2002).

  32. Bakolitsa, C., de Pereda, J. M., Bagshaw, C. R., Critchley, D. R. & Liddington, R. C. Crystal structure of the vinculin tail suggests a pathway for activation. Cell 99, 603–613 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Kazlauskas, A. & Cooper, J. A. Phosphorylation of the PDGF receptor β subunit creates a tight binding site for phosphatidylinositol 3 kinase. EMBO J. 9, 3279–3286 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Klippel, A. et al. Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways. Mol. Cell Biol. 16, 4117–4127 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Varnai, P., Rother, K. I. & Balla, T. Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton's tyrosine kinase pleckstrin homology domain visualized in single living cells. J. Biol. Chem. 274, 10983–10989 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Srinivasan, S. et al. Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. J. Cell Biol. 160, 375–385 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kobayashi, S. et al. Membrane recruitment of DOCK180 by binding to PtdIns(3,4,5)P3 . Biochem. J. 354, 73–78 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kiyokawa, E., Hashimoto, Y., Kurata, T., Sugimura, H. & Matsuda, M. Evidence that DOCK180 up-regulates signals from the CrkII-p130(Cas) complex. J. Biol. Chem. 273, 24479–24484 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Tamagnone, L. et al. BMX, a novel nonreceptor tyrosine kinase gene of the BTK/ITK/TEC/TXK family located in chromosome Xp22.2. Oncogene 9, 3683–3688 (1994).

    CAS  PubMed  Google Scholar 

  40. Ruoslahti, E., Hayman, E. G., Pierschbacher, M. & Engvall, E. Fibronectin: purification, immunochemical properties, and biological activities. Methods Enzymol. 82 Pt A, 803–831 (1982).

    Article  CAS  PubMed  Google Scholar 

  41. Polte, T. R. & Hanks, S. K. Complexes of focal adhesion kinase (FAK) and Crk-associated substrate (p130(Cas)) are elevated in cytoskeleton-associated fractions following adhesion and Src transformation. Requirements for Src kinase activity and FAK proline-rich motifs. J. Biol. Chem. 272, 5501–5509 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Katoh, H. & Negishi, M. RhoG activates Rac1 by direct interaction with the Dock180-binding protein Elmo. Nature 424, 461–464 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Walker, E. H., Perisic, O., Ried, C., Stephens, L. & Williams, R. L. Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature 402, 313–320 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Hurwitz, H. R. Horvitz, D. Schlaepfer and H. Katoh for useful discussions. We acknowledge the expert technical help provided by E. Monosov for microscopy experiments. J.-F.C. is a Research Fellow of The Terry Fox Foundation/National Cancer Institute of Canada. This work was supported by grants from the National Institutes of Health (to K.V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristiina Vuori.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3 and S4 plus movie legends (PDF 565 kb)

Supplementary Movie S1 (MOV 2912 kb)

Supplementary Movie S2 (MOV 1316 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Côté, JF., Motoyama, A., Bush, J. et al. A novel and evolutionarily conserved PtdIns(3,4,5)P3-binding domain is necessary for DOCK180 signalling. Nat Cell Biol 7, 797–807 (2005). https://doi.org/10.1038/ncb1280

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1280

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing