Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Focal adhesion kinase controls actin assembly via a FERM-mediated interaction with the Arp2/3 complex

Abstract

Networks of actin filaments, controlled by the Arp2/3 complex, drive membrane protrusion during cell migration. How integrins signal to the Arp2/3 complex is not well understood. Here, we show that focal adhesion kinase (FAK) and the Arp2/3 complex associate and colocalize at transient structures formed early after adhesion. Nascent lamellipodia, which originate at these structures, do not form in FAK-deficient cells, or in cells in which FAK mutants cannot be autophosphorylated after integrin engagement. The FERM domain of FAK binds directly to Arp3 and can enhance Arp2/3-dependent actin polymerization. Critically, Arp2/3 is not bound when FAK is phosphorylated on Tyr 397. Interfering peptides and FERM-domain point mutants show that FAK binding to Arp2/3 controls protrusive lamellipodia formation and cell spreading. This establishes a new function for the FAK FERM domain in forming a phosphorylation-regulated complex with Arp2/3, linking integrin signalling directly with the actin polymerization machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Formation of early spreading adhesions requires FAK and FAK Tyr 397 phosphorylation.
Figure 2: FAK binds to Arp3 when FAK Tyr 397 is not phosphorylated.
Figure 3: Arp3 no longer colocalizes with FAK as lamellipodia form beyond early spreading adhesions.
Figure 4: Arp3 association with the FAK FERM domain is regulated by FAK Tyr 397 phosphorylation.
Figure 5: Identification of Arp2/3 peptide binding sequences within FAK FERM domain.
Figure 6: Introduction of FERM domain Arp2/3 binding peptides reduces cell spreading and stress fibres.
Figure 7: Introduction of a FERM-domain effector mutant reduces lamellipodia production and cell spreading.
Figure 8: FAK FERM domain enhances Arp2/3-mediated actin polymerization.

Similar content being viewed by others

References

  1. Welch, M. D., Mallavarapu, A., Rosenblatt, J. & Mitchison, T. J. Actin dynamics in vivo. Curr. Opin. Cell Biol. 9, 54–61 (1997).

    Article  CAS  Google Scholar 

  2. Svitkina, T. M. & Borisy, G. G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009–1026 (1999).

    Article  CAS  Google Scholar 

  3. Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl Acad. Sci. USA 95, 6181–6186 (1998).

    Article  CAS  Google Scholar 

  4. Machesky, L. M. & Insall, R. H. Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8, 1347–1356 (1998).

    Article  CAS  Google Scholar 

  5. Miki, H., Suetsugu, S. & Takenawa, T. WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J. 17, 6932–6941 (1998).

    Article  CAS  Google Scholar 

  6. Robinson, R. C. et al. Crystal structure of Arp2/3 complex. Science 294, 1679–1684 (2001).

    Article  CAS  Google Scholar 

  7. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).

    Article  CAS  Google Scholar 

  8. Butler, B., Gao, C., Mersich, A. T. & Blystone, S. D. Purified integrin adhesion complexes exhibit actin-polymerization activity. Curr. Biol. 16, 242–251 (2006).

    Article  CAS  Google Scholar 

  9. DeMali, K. A., Barlow, C. A. & Burridge, K. Recruitment of the Arp2/3 complex to vinculin: coupling membrane protrusion to matrix adhesion. J. Cell Biol. 159, 881–891 (2002).

    Article  CAS  Google Scholar 

  10. Coll, J. L. et al. Targeted disruption of vinculin genes in F9 and embryonic stem cells changes cell morphology, adhesion, and locomotion. Proc. Natl Acad. Sci. USA 92, 9161–9165 (1995).

    Article  CAS  Google Scholar 

  11. Xu, W., Baribault, H. & Adamson, E. D. Vinculin knockout results in heart and brain defects during embryonic development. Development 125, 327–337 (1998).

    CAS  PubMed  Google Scholar 

  12. Ilic, D. et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539–544 (1995).

    Article  CAS  Google Scholar 

  13. Richardson, A., Malik, R. K., Hildebrand, J. D. & Parsons, J. T. Inhibition of cell spreading by expression of the C-terminal domain of focal adhesion kinase (FAK) is rescued by coexpression of Src or catalytically inactive FAK: a role for paxillin tyrosine phosphorylation. Mol. Cell Biol. 17, 6906–6914 (1997).

    Article  CAS  Google Scholar 

  14. Ren, X. D. et al. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J. Cell Sci. 113, 3673–3678 (2000).

    CAS  PubMed  Google Scholar 

  15. Westhoff, M. A., Serrels, B., Fincham, V. J., Frame, M. C. & Carragher, N. O. SRC-mediated phosphorylation of focal adhesion kinase couples actin and adhesion dynamics to survival signaling. Mol. Cell Biol. 24, 8113–8133 (2004).

    Article  CAS  Google Scholar 

  16. de Hoog, C. L., Foster, L. J. & Mann, M. RNA and RNA binding proteins participate in early stages of cell spreading through spreading initiation centers. Cell 117, 649–662 (2004).

    Article  CAS  Google Scholar 

  17. Wu, X., Suetsugu, S., Cooper, L. A., Takenawa, T. & Guan, J. L. Focal adhesion kinase regulation of N-WASP subcellular localization and function. J. Biol. Chem. 279, 9565–9576 (2004).

    Article  CAS  Google Scholar 

  18. Pollard, T. D. & Beltzner, C. C. Structure and function of the Arp2/3 complex. Curr. Opin. Struct. Biol. 12, 768–774 (2002).

    Article  CAS  Google Scholar 

  19. Millard, T. H., Sharp, S. J. & Machesky, L. M. Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex. Biochem. J. 380, 1–17 (2004).

    Article  CAS  Google Scholar 

  20. Lietha, D. et al. Structural basis for the autoinhibition of focal adhesion kinase. Cell 129, 1177–1187 (2007).

    Article  CAS  Google Scholar 

  21. Hotulainen, P. & Lappalainen, P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173, 383–394 (2006).

    Article  CAS  Google Scholar 

  22. Guo, F., Debidda, M., Yang, L., Williams, D. A. & Zheng, Y. Genetic deletion of Rac1 GTPase reveals its critical role in actin stress fiber formation and focal adhesion complex assembly. J. Biol. Chem. 281, 18652–18659 (2006).

    Article  CAS  Google Scholar 

  23. Chen, R. et al. Regulation of the PH-domain-containing tyrosine kinase Etk by focal adhesion kinase through the FERM domain. Nature Cell Biol. 3, 439–444 (2001).

    Article  CAS  Google Scholar 

  24. Dunty, J. M. et al. FERM domain interaction promotes FAK signaling. Mol. Cell Biol. 24, 5353–5368 (2004).

    Article  CAS  Google Scholar 

  25. Jacamo, R. O. & Rozengurt, E. A truncated FAK lacking the FERM domain displays high catalytic activity but retains responsiveness to adhesion-mediated signals. Biochem. Biophys. Res. Commun. 334, 1299–1304 (2005).

    Article  CAS  Google Scholar 

  26. Cohen, L. A. & Guan, J. L. Residues within the first subdomain of the FERM-like domain in focal adhesion kinase are important in its regulation. J. Biol. Chem. 280, 8197–8207 (2005).

    Article  CAS  Google Scholar 

  27. Avizienyte, E. et al. Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signalling. Nature Cell Biol. 4, 632–638 (2002).

    Article  CAS  Google Scholar 

  28. Yarrow, J. C., Lechler, T., Li, R. & Mitchison, T. J. Rapid de-localization of actin leading edge components with BDM treatment. BMC Cell Biol. 4, 5 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Cancer Research UK Program Grant and the Medical Research Council (G.E.J.). We would like to thank M. Kirschner for anti-WASP antibody and D. Ilic for FAK-deficient mouse cells.

Author information

Authors and Affiliations

Authors

Contributions

B.S. and A.S. performed the experimental work. M.H. performed FRAP analysis. V.G.B., G.W.M., G.E.J. and M.C.F. provided extensive scientific input. C.H.G. provided structural biology support. M.C.F. carried out the scientific writing.

Corresponding author

Correspondence to Margaret C. Frame.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1, 2, 3, 4, 5 and 6 (PDF 739 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serrels, B., Serrels, A., Brunton, V. et al. Focal adhesion kinase controls actin assembly via a FERM-mediated interaction with the Arp2/3 complex. Nat Cell Biol 9, 1046–1056 (2007). https://doi.org/10.1038/ncb1626

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1626

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing