Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Protein arginine-methyltransferase-dependent oncogenesis

Abstract

Enzymes that mediate reversible epigenetic modifications have not only been recognized as key in regulating gene expression1 and oncogenesis2,3, but also provide potential targets for molecular therapy4. Although the methylation of arginine 3 of histone 4 (H4R3) by protein arginine methyltransferase 1 (PRMT1) is a critical modification for active chromatin5,6 and prevention of heterochromatin spread7, there has been no direct evidence of any role of PRMTs in cancer. Here, we show that PRMT1 is an essential component of a novel Mixed Lineage Leukaemia (MLL) oncogenic transcriptional complex with both histone acetylation and H4R3 methylation activities, which also correlate with the expression of critical MLL downstream targets. Direct fusion of MLL with PRMT1 or Sam68, a bridging molecule in the complex for PRMT1 interaction, could enhance self-renewal of primary haematopoietic cells. Conversely, specific knockdown of PRMT1 or Sam68 expression suppressed MLL-mediated transformation. This study not only functionally dissects the oncogenic transcriptional machinery associated with an MLL fusion complex, but also uncovers — for the first time — an essential function of PRMTs in oncogenesis and reveals their potential as novel therapeutic targets in human cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The EEN-SH3 domain is necessary and sufficient for MLL–EEN-mediated transformation.
Figure 2: Identification of the protein complexes associated with the EEN-SH3 domain.
Figure 3: MLL–EEN mediates histone acetylation and H4R3 methylation on the Hoxa9 promoter, and enhances its expression.
Figure 4: The role of Sam68 in MLL–EEN-mediated transformation of primary haematopoietic cells.
Figure 5: The role of PRMT1 in MLL–EEN-mediated transformation of primary haematopoietic cells.

Similar content being viewed by others

References

  1. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  Google Scholar 

  2. Lund, A. H. & van Lohuizen, M. Epigenetics and cancer. Genes Dev. 18, 2315–2335 (2004).

    Article  CAS  Google Scholar 

  3. Schneider, R., Bannister, A. J. & Kouzarides, T. Unsafe SETs: histone lysine methyltransferases and cancer. Trends Biochem. Sci. 27, 396–402 (2002).

    Article  CAS  Google Scholar 

  4. Minucci, S. & Pelicci, P. G. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nature Rev. Cancer 6, 38–51 (2006).

    Article  CAS  Google Scholar 

  5. Bedford, M. T. & Richard, S. Arginine methylation an emerging regulator of protein function. Mol. Cell 18, 263–272 (2005).

    Article  CAS  Google Scholar 

  6. Lee, D. Y., Teyssier, C., Strahl, B. D. & Stallcup, M. R. Role of protein methylation in regulation of transcription. Endocr. Rev. 26, 147–170 (2005).

    Article  CAS  Google Scholar 

  7. Huang, S., Litt, M. & Felsenfeld, G. Methylation of histone H4 by arginine methyltransferase PRMT1 is essential in vivo for many subsequent histone modifications. Genes Dev. 19, 1885–1893 (2005).

    Article  CAS  Google Scholar 

  8. Look, A. T. Oncogenic transcription factors in the human acute leukemias. Science 278, 1059–1064 (1997).

    Article  CAS  Google Scholar 

  9. Dou, Y. et al. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nature Struct. Mol. Biol. 13, 713–719 (2006).

    Article  CAS  Google Scholar 

  10. Wysocka, J. et al. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121, 859–872 (2005).

    Article  CAS  Google Scholar 

  11. Daser, A. & Rabbitts, T. H. The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis. Semin. Cancer Biol. 15, 175–188 (2005).

    Article  CAS  Google Scholar 

  12. Milne, T. A. et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell 10, 1107–1117 (2002).

    Article  CAS  Google Scholar 

  13. Cozzio, A. et al. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev. 17, 3029–3035 (2003).

    Article  CAS  Google Scholar 

  14. So, C. W. et al. MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell 3, 161–171 (2003).

    Article  CAS  Google Scholar 

  15. Krivtsov, A. V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442, 818–822 (2006).

    Article  CAS  Google Scholar 

  16. So, C. W. et al. EEN encodes for a member of a new family of proteins containing an Src homology 3 domain and is the third gene located on chromosome 19p13 that fuses to MLL in human leukemia. Proc. Natl Acad. Sci. USA 94, 2563–2568 (1997).

    Article  CAS  Google Scholar 

  17. So, C. W. & Cleary, M. L. Dimerization: a versatile switch for oncogenesis. Blood 104, 919–922 (2004).

    Article  CAS  Google Scholar 

  18. So, C. W. & Cleary, M. L. Common mechanism for oncogenic activation of MLL by forkhead family proteins. Blood 101, 633–639 (2003).

    Article  CAS  Google Scholar 

  19. Lukong, K. E. & Richard, S. Sam68, the KH domain-containing superSTAR. Biochim. Biophys. Acta 1653, 73–86 (2003).

    CAS  PubMed  Google Scholar 

  20. Batsche, E., Yaniv, M. & Muchardt, C. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nature Struct. Mol. Biol. 13, 22–29 (2006).

    Article  CAS  Google Scholar 

  21. So, C. W., Karsunky, H., Wong, P., Weissman, I. L. & Cleary, M. L. Leukemic transformation of hematopietic progenitors by MLL-GAS7 in the absence of Hoxa7 or Hoxa9. Blood 103, 3192–3199 (2004).

    Article  CAS  Google Scholar 

  22. Ayton, P. M. & Cleary, M. L. Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev. 17, 2298–2307 (2003).

    Article  CAS  Google Scholar 

  23. Wang, H. et al. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293, 853–857 (2001).

    Article  CAS  Google Scholar 

  24. Ernst, P., Wang, J., Huang, M., Goodman, R. H. & Korsmeyer, S. J. MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein. Mol. Cell Biol. 21, 2249–2258 (2001).

    Article  CAS  Google Scholar 

  25. So, C. W. & Cleary, M. L. MLL-AFX requires the transcriptional effector domains of AFX to transform myeloid progenitors and transdominantly interfere with forkhead protein function. Mol. Cell Biol. 22, 6542–6552 (2002).

    Article  CAS  Google Scholar 

  26. Torres-Padilla, M. E., Parfitt, D. E., Kouzarides, T. & Zernicka-Goetz, M. Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 445, 214–218 (2007).

    Article  CAS  Google Scholar 

  27. Ancelin, K. et al. Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nature Cell Biol. 8, 623–630 (2006).

    Article  CAS  Google Scholar 

  28. Kwok, C., Zeisig, B. B., Dong, S. & So, C. W. Forced homo-oligomerization of RARα leads to transformation of primary hematopoietic cells. Cancer Cell 9, 95–108 (2006).

    Article  CAS  Google Scholar 

  29. Zeisig, B. B. et al. Recruitment of RXR by homotetrameric RARα fusion proteins is essential for transformation. Cancer Cell 12, 36–51 (2007).

    Article  CAS  Google Scholar 

  30. Sternsdorf, T. et al. Forced retinoic acid receptor alpha homodimers prime mice for APL-like leukemia. Cancer Cell 9, 81–94 (2006).

    Article  CAS  Google Scholar 

  31. Zhu, J. et al. RXR is an essential component of the oncogenic PML/RARA complex in vivo. Cancer Cell 12, 23–35 (2007).

    Article  CAS  Google Scholar 

  32. Villa, R. et al. Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell 11, 513–525 (2007).

    Article  CAS  Google Scholar 

  33. An, W., Kim, J. & Roeder, R. G. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117, 735–748 (2004).

    Article  CAS  Google Scholar 

  34. Okada, Y. et al. hDOT1L links histone methylation to leukemogenesis. Cell 121, 167–178 (2005).

    Article  CAS  Google Scholar 

  35. Cheung, N. et al. Subcellular localization of EEN/endophilin A2, a fusion partner gene in leukemia. Biochem. J. 383, 27–35 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Greaves, P. Workman, A. Ashworth, T. Lappin, S. Armstrong, A. Zelent, S. Huang and D. Shuo for useful discussion; J. Yam, G. McGonigle, B. Zeisig, W. Yue, A. Wilson, M. Boix-Chornet for excellent technical help; A. Thornhill, F. Darling, BSU staff for husbandry of mice; and P. Tse for professional artwork. This work is supported by the Association for International Cancer Research (AICR), and CWE So is an AICR research fellow.

Author information

Authors and Affiliations

Authors

Contributions

N.C. performed most of the experiments; A.T. did the Q–RT–QPCR; L.C.C. and M.L.C. provided critical advice; C.W.E.S. designed and oversaw the project and wrote the manuscript.

Corresponding author

Correspondence to Chi Wai Eric So.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3 and S4 (PDF 160 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, N., Chan, L., Thompson, A. et al. Protein arginine-methyltransferase-dependent oncogenesis. Nat Cell Biol 9, 1208–1215 (2007). https://doi.org/10.1038/ncb1642

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1642

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing