Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells

Abstract

Imaging of collectively invading cocultures of carcinoma cells and stromal fibroblasts reveals that the leading cell is always a fibroblast and that carcinoma cells move within tracks in the extracellular matrix behind the fibroblast. The generation of these tracks by fibroblasts is sufficient to enable the collective invasion of the squamous cell carcinoma (SCC) cells and requires both protease- and force-mediated matrix remodelling. Force-mediated matrix remodelling depends on integrins α3 and α5, and Rho-mediated regulation of myosin light chain (MLC) activity in fibroblasts, but these factors are not required in carcinoma cells. Instead, carcinoma cells use Cdc42 and MRCK (myotonic dystrophy kinase-related CDC42-binding protein kinases) mediated regulation of MLC to follow the tracks generated by fibroblasts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fibroblasts promote and lead collective SCC invasion.
Figure 2: Fibroblasts generate tracks in the matrix that are sufficient to support SCC invasion.
Figure 3: Rho–ROCK function is required only in stromal fibroblasts for collective SCC invasion.
Figure 4: Integrins α3 and α5 are required in fibroblasts for collective SCC invasion.
Figure 5: Cdc42–MRCK function regulates MLC and invasion in SCC cells.

Similar content being viewed by others

References

  1. DiCostanzo, D., Rosen, P. P., Gareen, I., Franklin, S. & Lesser, M. Prognosis in infiltrating lobular carcinoma. An analysis of “classical” and variant tumors. Am. J. Surg. Pathol. 14, 12–23 (1990).

    Article  CAS  Google Scholar 

  2. Yamamoto, E., Kohama, G., Sunakawa, H., Iwai, M. & Hiratsuka, H. Mode of invasion, bleomycin sensitivity, and clinical course in squamous cell carcinoma of the oral cavity. Cancer 51, 2175–2180 (1983).

    Article  CAS  Google Scholar 

  3. Macpherson, I. R. et al. p120-catenin is required for the collective invasion of squamous cell carcinoma cells via a phosphorylation-independent mechanism. Oncogene 26, 5214–5228 (2007).

    Article  CAS  Google Scholar 

  4. Wolf, K. et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nature Cell Biol. 9, 893–904 (2007).

    Article  CAS  Google Scholar 

  5. Nystrom, M. L. et al. Development of a quantitative method to analyse tumour cell invasion in organotypic culture. J. Pathol. 205, 468–475 (2005).

    Article  CAS  Google Scholar 

  6. Costea, D. E., Kulasekara, K., Neppelberg, E., Johannessen, A. C. & Vintermyr, O. K. Species-specific fibroblasts required for triggering invasiveness of partially transformed oral keratinocytes. Am. J. Pathol. 168, 1889–1897 (2006).

    Article  CAS  Google Scholar 

  7. Cukierman, E. Cell migration analyses within fibroblast-derived 3-D matrices. Methods Mol. Biol. 294, 79–93 (2005).

    CAS  PubMed  Google Scholar 

  8. Wyckoff, J. B., Pinner, S. E., Gschmeissner, S., Condeelis, J. S. & Sahai, E. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr. Biol. 16, 1515–1523 (2006).

    Article  CAS  Google Scholar 

  9. Egeblad, M., Littlepage, L. E. & Werb, Z. The fibroblastic coconspirator in cancer progression. Cold Spring Harb. Symp. Quant. Biol. 70, 383–388 (2005).

    Article  CAS  Google Scholar 

  10. Kim, A., Lakshman, N. & Petroll, W. M. Quantitative assessment of local collagen matrix remodeling in 3-D culture: the role of Rho kinase. Exp. Cell Res. 312, 3683–3692 (2006).

    Article  CAS  Google Scholar 

  11. Lakshman, N., Kim, A., Bayless, K. J., Davis, G. E. & Petroll, W. M. Rho plays a central role in regulating local cell-matrix mechanical interactions in 3D culture. Cell Motil. Cytoskeleton 64, 434–445 (2007).

    Article  CAS  Google Scholar 

  12. Rhee, S. & Grinnell, F. P21-activated kinase 1: convergence point in PDGF- and LPA-stimulated collagen matrix contraction by human fibroblasts. J. Cell Biol. 172, 423–432 (2006).

    Article  CAS  Google Scholar 

  13. Sahai, E. & Olson, M. F. Purification of TAT-C3 exoenzyme. Methods Enzymol. 406, 128–140 (2006).

    Article  CAS  Google Scholar 

  14. Berdeaux, R. L., Diaz, B., Kim, L. & Martin, G. S. Active Rho is localized to podosomes induced by oncogenic Src and is required for their assembly and function. J. Cell Biol. 166, 317–323 (2004).

    Article  CAS  Google Scholar 

  15. Hegerfeldt, Y., Tusch, M., Brocker, E. B. & Friedl, P. Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, beta1-integrin function, and migration strategies. Cancer Res. 62, 2125–2130 (2002).

    CAS  PubMed  Google Scholar 

  16. Danen, E. H. et al. Integrins control motile strategy through a Rho-cofilin pathway. J. Cell Biol. 169, 515–526 (2005).

    Article  CAS  Google Scholar 

  17. White, D. P., Caswell, P. T. & Norman, J. C. α v β3 and α5β1 integrin recycling pathways dictate downstream Rho kinase signaling to regulate persistent cell migration. J. Cell Biol. 177, 515–525 (2007).

    Article  CAS  Google Scholar 

  18. Ren, X. D., Kiosses, W. B. & Schwartz, M. A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J. 18, 578–585 (1999).

    Article  CAS  Google Scholar 

  19. Wilkinson, S., Paterson, H. F. & Marshall, C. J. Cdc42–MRCK and Rho–ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nature Cell Biol. 7, 255–261 (2005).

    Article  CAS  Google Scholar 

  20. Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Rev. Cancer 2, 442–454 (2002).

    Article  CAS  Google Scholar 

  21. De Wever, O. et al. Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J. 18, 1016–1018 (2004).

    Article  CAS  Google Scholar 

  22. Bhowmick, N. A., Neilson, E. G. & Moses, H. L. Stromal fibroblasts in cancer initiation and progression. Nature 432, 332–337 (2004).

    Article  CAS  Google Scholar 

  23. Orimo, A. & Weinberg, R. A. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5, 1597–1601 (2006).

    Article  CAS  Google Scholar 

  24. Ronnov-Jessen, L., Petersen, O. W., Koteliansky, V. E. & Bissell, M. J. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J. Clin. Invest. 95, 859–873 (1995).

    Article  CAS  Google Scholar 

  25. Kaariainen, E. et al. Switch to an invasive growth phase in melanoma is associated with tenascin-C, fibronectin, and procollagen-I forming specific channel structures for invasion. J. Pathol. 210, 181–191 (2006).

    Article  CAS  Google Scholar 

  26. Provenzano, P. P. et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4, 38 (2006).

    Article  Google Scholar 

  27. Bajenoff, M. et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25, 989–1001 (2006).

    Article  CAS  Google Scholar 

  28. Kitamura, T. et al. SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nature Genet. 39, 467–475 (2007).

    Article  CAS  Google Scholar 

  29. Mackenzie, I. C. Growth of malignant oral epithelial stem cells after seeding into organotypical cultures of normal mucosa. J. Oral Pathol. Med. 33, 71–78 (2004).

    Article  Google Scholar 

  30. Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).

    Article  CAS  Google Scholar 

  31. Hooper, S., Marshall, J. F. & Sahai, E. Tumor cell migration in three dimensions. Methods Enzymol. 406, 625–643 (2006).

    Article  CAS  Google Scholar 

  32. Goulimari, P. et al. Gα12/13 is essential for directed cell migration and localized Rho–Dia1 function. J. Biol. Chem. 280, 42242–42251 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Weston, P. Jordan and G. Elia for invaluable technical assistance. This work was funded by Cancer Research UK, C.G. received additional funds from Bettencourt Schueller Fondation and C.H.C. is funded by an EMBO long-term fellowship.

Author information

Authors and Affiliations

Authors

Contributions

C.G. generated the majority of the data, S.H. generated data in figs 3, 4 and S1, S3 and S4. C.H.C. generated the data in fig. S6. R.G. provided reagents. J.F.M. provided technical assistance. K.H. provided clinical material for fig. S6 and carcinoma-associated fibroblasts. E.S. generated data in figs 3 and 5 and provided intellectual input.

Corresponding author

Correspondence to Erik Sahai.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4, S5, S6, S7, movie legends and Table 1 (PDF 866 kb)

Supplementary Information

Supplementary Movie 1 (AVI 9174 kb)

Supplementary Information

Supplementary Movie 2 (AVI 415 kb)

Supplementary Information

Supplementary Movie 3 (AVI 568 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaggioli, C., Hooper, S., Hidalgo-Carcedo, C. et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 9, 1392–1400 (2007). https://doi.org/10.1038/ncb1658

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1658

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing