Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Jade-1 inhibits Wnt signalling by ubiquitylating β-catenin and mediates Wnt pathway inhibition by pVHL

Abstract

The von Hippel–Lindau protein pVHL suppresses renal tumorigenesis in part by promoting the degradation of hypoxia-inducible HIF-α transcription factors1; additional mechanisms have been proposed2. pVHL also stabilizes the plant homeodomain protein Jade-1, which is a candidate renal tumour suppressor that may correlate with renal cancer risk3,4,5. Here we show that Jade-1 binds the oncoprotein β-catenin in Wnt-responsive fashion. Moreover, Jade-1 destabilizes wild-type β-catenin but not a cancer-causing form of β-catenin. Whereas the well-established β-catenin E3 ubiquitin ligase component β-TrCP ubiquitylates only phosphorylated β-catenin6, Jade-1 ubiquitylates both phosphorylated and non-phosphorylated β-catenin and therefore regulates canonical Wnt signalling in both Wnt-off and Wnt-on phases. Thus, the different characteristics of β-TrCP and Jade-1 may ensure optimal Wnt pathway regulation. Furthermore, pVHL downregulates β-catenin in a Jade-1-dependent manner and inhibits Wnt signalling, supporting a role for Jade-1 and Wnt signalling in renal tumorigenesis. The pVHL tumour suppressor and the Wnt tumorigenesis pathway are therefore directly linked through Jade-1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Jade-1 and β-catenin interact.
Figure 2: Jade-1 reduces β-catenin protein abundance.
Figure 3: Jade-1 ubiquitylates β-catenin.
Figure 4: Jade-1 inhibits canonical Wnt signalling.
Figure 5: pVHL regulates endogenous β-catenin through Jade-1.

Similar content being viewed by others

References

  1. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  Google Scholar 

  2. Cohen, H. T. & McGovern, F. J. Renal-cell carcinoma. N. Engl. J. Med. 353, 2477–2490 (2005).

    Article  CAS  Google Scholar 

  3. Zhou, M. I. et al. The von Hippel–Lindau tumor suppressor stabilizes novel plant homeodomain protein Jade-1. J. Biol. Chem. 277, 39887–39898 (2002).

    Article  CAS  Google Scholar 

  4. Zhou, M. I., Wang, H., Foy, R. L., Ross, J. J. & Cohen, H. T. Tumor suppressor von Hippel–Lindau (VHL) stabilization of Jade-1 protein occurs through plant homeodomains and is VHL mutation dependent. Cancer Res. 64, 1278–1286 (2004).

    Article  CAS  Google Scholar 

  5. Zhou, M. I. et al. Jade-1, a candidate renal tumor suppressor that promotes apoptosis. Proc. Natl Acad. Sci. USA 102, 11035–11040 (2005).

    Article  CAS  Google Scholar 

  6. Winston, J. T. et al. The SCFβ–TRCP–ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev. 13, 270–283 (1999).

    Article  CAS  Google Scholar 

  7. Nusse, R. Wnt signaling in disease and in development. Cell Res. 15, 28–32 (2005).

    Article  CAS  Google Scholar 

  8. Panchenko, M. V., Zhou, M. I. & Cohen, H. T. von Hippel–Lindau partner Jade-1 is a transcriptional co-activator associated with histone acetyltransferase activity. J. Biol. Chem. 279, 56032–56041 (2004).

    Article  CAS  Google Scholar 

  9. Latres, E., Chiaur, D. S. & Pagano, M. The human F box protein β-Trcp associates with the Cul1/Skp1 complex and regulates the stability of β-catenin. Oncogene 18, 849–854 (1999).

    Article  CAS  Google Scholar 

  10. Schulz, I. Permeabilizing cells: some methods and applications for the study of intracellular processes. Methods Enzymol. 192, 280–300 (1990).

    Article  CAS  Google Scholar 

  11. Aberle, H., Bauer, A., Stappert, J., Kispert, A. & Kemler, R. β-Catenin is a target for the ubiquitin–proteasome pathway. EMBO J. 16, 3797–3804 (1997).

    Article  CAS  Google Scholar 

  12. Coscoy, L., Sanchez, D. J. & Ganem, D. A novel class of herpesvirus-encoded membrane-bound E3 ubiquitin ligases regulates endocytosis of proteins involved in immune recognition. J. Cell Biol. 155, 1265–1273 (2001).

    Article  CAS  Google Scholar 

  13. Lu, Z., Xu, S., Joazeiro, C., Cobb, M. H. & Hunter, T. The PHD domain of MEKK1 acts as an E3 ubiquitin ligase and mediates ubiquitination and degradation of ERK1/2. Mol. Cell 9, 945–956 (2002).

    Article  CAS  Google Scholar 

  14. Belaidouni, N. et al. Overexpression of human β TrCP1 deleted of its F box induces tumorigenesis in transgenic mice. Oncogene 24, 2271–2276 (2005).

    Article  CAS  Google Scholar 

  15. McCrea, P. D., Brieher, W. M. & Gumbiner, B. M. Induction of a secondary body axis in Xenopus by antibodies to β-catenin. J. Cell Biol. 123, 477–484 (1993).

    Article  CAS  Google Scholar 

  16. Jho, E. H. et al. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol. 22, 1172–1183 (2002).

    Article  CAS  Google Scholar 

  17. Iliopoulos, O., Ohh, M. & Kaelin, W. G. Jr. pVHL19 is a biologically active product of the von Hippel–Lindau gene arising from internal translation initiation. Proc. Natl Acad. Sci. USA 95, 11661–11666 (1998).

    Article  CAS  Google Scholar 

  18. Hovanes, K. et al. β-Catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nature Genet. 28, 53–57 (2001).

    CAS  PubMed  Google Scholar 

  19. Larabell, C. A. et al. Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in β-catenin that are modulated by the Wnt signaling pathway. J. Cell Biol. 136, 1123–1136 (1997).

    Article  CAS  Google Scholar 

  20. Liu, J. et al. Siah-1 mediates a novel β-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol. Cell 7, 927–936 (2001).

    Article  CAS  Google Scholar 

  21. Nastasi, T. et al. Ozz-E3, a muscle-specific ubiquitin ligase, regulates β-catenin degradation during myogenesis. Dev. Cell 6, 269–282 (2004).

    Article  CAS  Google Scholar 

  22. Hart, M. et al. The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell. Curr. Biol. 9, 207–210 (1999).

    Article  CAS  Google Scholar 

  23. Kitagawa, M. et al. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of β-catenin. EMBO J. 18, 2401–2410 (1999).

    Article  CAS  Google Scholar 

  24. Sansom, O. J., Griffiths, D. F., Reed, K. R., Winton, D. J. & Clarke, A. R. Apc deficiency predisposes to renal carcinoma in the mouse. Oncogene 24, 8205–8210 (2005).

    Article  CAS  Google Scholar 

  25. Qian, C. N. et al. Cystic renal neoplasia following conditional inactivation of Apc in mouse renal tubular epithelium. J. Biol. Chem. 280, 3938–3945 (2005).

    Article  CAS  Google Scholar 

  26. Saadi-Kheddouci, S. et al. Early development of polycystic kidney disease in transgenic mice expressing an activated mutant of the β-catenin gene. Oncogene 20, 5972–5981 (2001).

    Article  CAS  Google Scholar 

  27. Battagli, C. et al. Promoter hypermethylation of tumor suppressor genes in urine from kidney cancer patients. Cancer Res. 63, 8695–8699 (2003).

    CAS  PubMed  Google Scholar 

  28. Peruzzi, B., Athauda, G. & Bottaro, D. P. The von Hippel–Lindau tumor suppressor gene product represses oncogenic β-catenin signaling in renal carcinoma cells. Proc. Natl Acad. Sci. USA 103, 14531–14536 (2006).

    Article  CAS  Google Scholar 

  29. Simons, M. et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nature Genet. 37, 537–543 (2005).

    Article  CAS  Google Scholar 

  30. Nieuwkoop, J. & Faber, J. Normal Table of Xenopus laevis (North-Holland, Amsterdam, 1967).

    Google Scholar 

  31. Dominguez, I. et al. Protein kinase CK2 is required for dorsal axis formation in Xenopus embryos. Dev. Biol. 274, 110–124 (2004).

    Article  CAS  Google Scholar 

  32. Kao, K. R. & Elinson, R. P. The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos. Dev. Biol. 127, 64–77 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Z.-X. Xiao (Boston University) for insightful suggestions and careful review of the manuscript; K. Symes, M. Malikova and E. Smith (all of Boston University) for Xenopus laevis embryos; R. Kemler (Max Planck Institute for Immunobiology, Germany) for providing the β-catenin S33A construct; W. Birchmeier (Max Delbruck Center for Molecular Medicine, Germany) for β-catenin C and N terminus deletion constructs; and R. Benarous (Institute Pasteur, France) for wild-type and DN β-TrCP in pcDNA3.1 Myc/His vector. This work was supported by fellowship grants from the National Kidney Foundation and Polycystic Kidney Disease Foundation (to V.C.C.) and by National Institutes of Health (NIH) Training Grant T32 DK07053 (for V.C.C. and R.L.F.); by American Heart Association grant SDG 0535485T and American Cancer Society grant IRG-72-001-32-IRG (to M.V.P.); by a pilot research grant from the Department of Medicine at Boston University School of Medicine and a Karin Grunebaum Junior Faculty Cancer Research Award (to I.D.); and by NIH grants R01 CA71796 (to D.C.S.) and R01 CA79830 and R01 DK67569 (to H.T.C.). Part of this work was presented at the American Society of Nephrology annual meeting in San Diego, California, USA, in November 2006, and at the American Society of Nephrology annual meeting in San Francisco, California, USA, in November 2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert T. Cohen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2887 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chitalia, V., Foy, R., Bachschmid, M. et al. Jade-1 inhibits Wnt signalling by ubiquitylating β-catenin and mediates Wnt pathway inhibition by pVHL. Nat Cell Biol 10, 1208–1216 (2008). https://doi.org/10.1038/ncb1781

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1781

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing