Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Topoisomerase IIα controls the decatenation checkpoint

An Author Correction to this article was published on 04 September 2018

Abstract

Topoisomerase II (Topo II) is required to separate intertwined sister chromatids before chromosome segregation can occur in mitosis1. However, it remains to be resolved whether Topo II has any role in checkpoint control. Here we report that when phosphorylated, Ser 1524 of Topo IIα acts as a binding site for the BRCT domain of MDC1 (mediator of DNA damage checkpoint protein-1), thereby recruiting MDC1 to chromatin. Although Topo IIα–MDC1 interaction is not required for checkpoint activation induced by DNA damage, it is required for activation of the decatenation checkpoint. Mutation of Ser 1524 results in a defective decatenation checkpoint. These results reveal an important role of Topo II in checkpoint activation and in the maintenance of genomic stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MDC1 interacts with Topo IIα through its BRCT domain.
Figure 2: The pSer 1524 site of Topo IIα is the binding site of the MDC1 BRCT domain.
Figure 3: The MDC1–Topo IIα interaction is important for activation of the decatenation checkpoint.
Figure 4: Phospho-Topo IIα recruits MDC1 to chromatin and activates the decatenation checkpoint.

Similar content being viewed by others

References

  1. Holm, C., Stearns, T. & Botstein, D. DNA topoisomerase II must act at mitosis to prevent nondisjunction and chromosome breakage. Mol. Cell. Biol. 9, 159–168 (1989).

    Article  CAS  Google Scholar 

  2. Holm, C. Coming undone: how to untangle a chromosome. Cell 77, 955–957 (1994).

    Article  CAS  Google Scholar 

  3. Deming, P. B. et al. The human decatenation checkpoint. Proc. Natl Acad. Sci. USA 98, 12044–12049 (2001).

    Article  CAS  Google Scholar 

  4. Downes, C. S. et al. A topoisomerase II-dependent G2 cycle checkpoint in mammalian cells. Nature 372, 467–470 (1994).

    Article  CAS  Google Scholar 

  5. Roca, J., Ishida, R., Berger, J. M., Andoh, T. & Wang, J. C. Antitumor bisdioxopiperazines inhibit yeast DNA topoisomerase II by trapping the enzyme in the form of a closed protein clamp. Proc. Natl Acad. Sci. USA 91, 1781–1785 (1994).

    Article  CAS  Google Scholar 

  6. Clarke, D. J., Johnson, R. T. & Downes, C. S. Topoisomerase II inhibition prevents anaphase chromatid segregation in mammalian cells independently of the generation of DNA strand breaks. J. Cell Sci. 105, 563–569 (1993).

    CAS  PubMed  Google Scholar 

  7. Nakagawa, T. et al. Identification of decatenation G2 checkpoint impairment independently of DNA damage G2 checkpoint in human lung cancer cell lines. Cancer Res. 64, 4826–4832 (2004).

    Article  CAS  Google Scholar 

  8. Doherty, S. C. et al. Cell cycle checkpoint function in bladder cancer. J. Natl Cancer Inst. 95, 1859–1868 (2003).

    Article  CAS  Google Scholar 

  9. Damelin, M., Sun, Y. E., Sodja, V. B. & Bestor, T. H. Decatenation checkpoint deficiency in stem and progenitor cells. Cancer Cell 8, 479–484 (2005).

    Article  CAS  Google Scholar 

  10. Franchitto, A., Oshima, J. & Pichierri, P. The G2-phase decatenation checkpoint is defective in Werner syndrome cells. Cancer Res. 63, 3289–3295 (2003).

    CAS  PubMed  Google Scholar 

  11. Stucki, M. & Jackson, S. P. γH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair 5, 534–543 (2006).

    Article  CAS  Google Scholar 

  12. Manke, I. A., Lowery, D. M., Nguyen, A. & Yaffe, M. B. BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 302, 636–639 (2003).

    Article  CAS  Google Scholar 

  13. Yu, X., Chini, C. C., He, M., Mer, G. & Chen, J. The BRCT domain is a phospho-protein binding domain. Science 302, 639–642 (2003).

    Article  CAS  Google Scholar 

  14. Rodriguez, M., Yu, X., Chen, J. & Songyang, Z. Phosphopeptide binding specificities of BRCA1 COOH-terminal (BRCT) domains. J Biol. Chem. 278, 52914–52918 (2003).

    Article  CAS  Google Scholar 

  15. Wells, N. J., Addison, C. M., Fry, A. M., Ganapathi, R. & Hickson, I. D. Serine 1524 is a major site of phosphorylation on human topoisomerase II α protein in vivo and is a substrate for casein kinase II in vitro. J. Biol. Chem. 269, 29746–29751 (1994).

    CAS  PubMed  Google Scholar 

  16. Ackerman, P., Glover, C. V. & Osheroff, N. Phosphorylation of DNA topoisomerase II by casein kinase II: modulation of eukaryotic topoisomerase II activity in vitro. Proc. Natl Acad. Sci. USA 82, 3164–3168 (1985).

    Article  CAS  Google Scholar 

  17. Kimura, K., Saijo, M., Tanaka, M. & Enomoto, T. Phosphorylation-independent stimulation of DNA topoisomerase II α activity. J. Biol. Chem. 271, 10990–10995 (1996).

    Article  CAS  Google Scholar 

  18. Redwood, C., Davies, S. L., Wells, N. J., Fry, A. M. & Hickson, I. D. Casein kinase II stabilizes the activity of human topoisomerase II α in a phosphorylation-independent manner. J. Biol. Chem. 273, 3635–3642 (1998).

    Article  CAS  Google Scholar 

  19. Wessel, I. et al. Human small cell lung cancer NYH cells selected for resistance to the bisdioxopiperazine topoisomerase II catalytic inhibitor ICRF-187 demonstrate a functional R162Q mutation in the Walker A consensus ATP binding domain of the α isoform. Cancer Res. 59, 3442–3450 (1999).

    CAS  PubMed  Google Scholar 

  20. Park, I. & Avraham, H. K. Cell cycle-dependent DNA damage signaling induced by ICRF-193 involves ATM, ATR, CHK2, and BRCA1. Exp. Cell Res. 312, 1996–2008 (2006).

    Article  CAS  Google Scholar 

  21. Hajji, N., Pastor, N., Mateos, S., Dominguez, I. & Cortes, F. DNA strand breaks induced by the anti-topoisomerase II bis-dioxopiperazine ICRF-193. Mutat. Res. 530, 35–46 (2003).

    Article  CAS  Google Scholar 

  22. Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    Article  CAS  Google Scholar 

  23. Huyen, Y. et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432, 406–411 (2004).

    Article  CAS  Google Scholar 

  24. Sanders, S. L. et al. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119, 603–614 (2004).

    Article  CAS  Google Scholar 

  25. Classen, S., Olland, S. & Berger, J. M. Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187. Proc. Natl Acad. Sci. USA 100, 10629–10634 (2003).

    Article  CAS  Google Scholar 

  26. Deming, P. B., Flores, K. G., Downes, C. S., Paules, R. S. & Kaufmann, W. K. ATR enforces the topoisomerase II-dependent G2 checkpoint through inhibition of Plk1 kinase. J. Biol. Chem. 277, 36832–36838 (2002).

    Article  CAS  Google Scholar 

  27. Petronczki, M., Lenart, P. & Peters, J. M. Polo on the rise-from mitotic entry to cytokinesis with Plk1. Dev. Cell 14, 646–659 (2008).

    Article  CAS  Google Scholar 

  28. Andrews, C. A. et al. A mitotic topoisomerase II checkpoint in budding yeast is required for genome stability but acts independently of Pds1/securin. Genes Dev. 20, 1162–1174 (2006).

    Article  CAS  Google Scholar 

  29. Gimenez-Abian, J. F. et al. Premitotic chromosome individualization in mammalian cells depends on topoisomerase II activity. Chromosoma 109, 235–244 (2000).

    Article  CAS  Google Scholar 

  30. Lou, Z., Chini, C. C., Minter-Dykhouse, K. & Chen, J. Mediator of DNA damage checkpoint protein 1 regulates BRCA1 localization and phosphorylation in DNA damage checkpoint control. J. Biol. Chem. 278, 13599–13602 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants to J.C. from the National Institutes of Health (NIH). Z.L. was supported by grants from the Richard Schulze Family Foundation, Susan G. Komen Breast Cancer Foundation and NIH (CA130996). J.C. is a recipient of an Era of Hope Scholars award from the Department of Defense, and a member of the Mayo Clinic Breast SPORE program.

Author information

Authors and Affiliations

Authors

Contributions

K.L., J.Y. and Z.L. performed the experiments and analysed the data; Z.L. and J.C. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Junjie Chen or Zhenkun Lou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 622 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, K., Yuan, J., Chen, J. et al. Topoisomerase IIα controls the decatenation checkpoint. Nat Cell Biol 11, 204–210 (2009). https://doi.org/10.1038/ncb1828

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1828

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing