Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA

Abstract

Recurrent chromosomal aberrations are often observed in hepatocellular carcinoma (HCC), but little is known about the functional non-coding sequences, particularly microRNAs (miRNAs), at the chromosomal breakpoints in HCC. Here we show that 22 miRNAs are often amplified or deleted in HCC. MicroRNA-151 (miR-151), a frequently amplified miRNA on 8q24.3, is correlated with intrahepatic metastasis of HCC. We further show that miR-151, which is often expressed together with its host gene FAK, encoding focal adhesion kinase, significantly increases HCC cell migration and invasion in vitro and in vivo, mainly through miR-151-5p, but not through miR-151-3p. Moreover, miR-151 exerts this function by directly targeting RhoGDIA, a putative metastasis suppressor in HCC, thus leading to the activation of Rac1, Cdc42 and Rho GTPases. In addition, miR-151 can function synergistically with FAK to enhance HCC cell motility and spreading. Thus, our findings indicate that chromosome gain of miR-151 is a crucial stimulus for tumour invasion and metastasis of HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: miR-151 is frequently amplified and expressed together with FAK and is associated with intrahepatic metastasis of HCC.
Figure 2: High expression of miR-151 promotes HCC cell invasion and metastasis in vitro and in vivo.
Figure 3: miR-151-5p, but not miR-151-3p, promotes HCC cell migration and invasion.
Figure 4: miR-151 downregulates RhoGDIA expression by directly targeting its 3′ UTR in HCC cells.
Figure 5: RhoGDIA functions as a metastasis suppressor and can block miR-151-induced HCC cell migration and invasion.
Figure 6: miR-151 can function synergistically with FAK to enhance HCC cell motility and invasiveness and to increase the activities of Rac1, Cdc42 and Rho GTPases in HCC cells.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Albertson, D. G., Collins, C., McCormick, F. & Gray, J. W. Chromosome aberrations in solid tumors. Nature Genet. 34, 369–376 (2003).

    Article  CAS  Google Scholar 

  2. Bayani, J. et al. Genomic mechanisms and measurement of structural and numerical instability in cancer cells. Semin. Cancer Biol. 17, 5–18 (2007).

    Article  CAS  Google Scholar 

  3. El-Serag, H. B. & Rudolph, K. L. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132, 2557–2576 (2007).

    Article  CAS  Google Scholar 

  4. Lau, S. H. & Guan, X. Y. Cytogenetic and molecular genetic alterations in hepatocellular carcinoma. Acta Pharmacol. Sin. 26, 659–665 (2005).

    Article  CAS  Google Scholar 

  5. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  6. He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genet. 5, 522–531 (2004).

    Article  CAS  Google Scholar 

  7. Calin, G. A. & Croce, C. M. MicroRNA signatures in human cancers. Nature Rev. Cancer 6, 857–866 (2006).

    Article  CAS  Google Scholar 

  8. Esquela-Kerscher, A. & Slack, F. J. Oncomirs — microRNAs with a role in cancer. Nature Rev. Cancer 6, 259–269 (2006).

    Article  CAS  Google Scholar 

  9. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    Article  CAS  Google Scholar 

  10. Yanaihara, N. et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9, 189–198 (2006).

    Article  CAS  Google Scholar 

  11. Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA 101, 2999–3004 (2004).

    Article  CAS  Google Scholar 

  12. Marchio, A. et al. Distinct chromosomal abnormality pattern in primary liver cancer of non-B, non-C patients. Oncogene 19, 3733–3738 (2000).

    Article  CAS  Google Scholar 

  13. Parada, L. A. et al. Frequent rearrangements of chromosomes 1, 7, and 8 in primary liver cancer. Genes Chromosomes Cancer 23, 26–35 (1998).

    Article  CAS  Google Scholar 

  14. Marchio, A. et al. Recurrent chromosomal abnormalities in hepatocellular carcinoma detected by comparative genomic hybridization. Genes Chromosomes Cancer 18, 59–65 (1997).

    Article  CAS  Google Scholar 

  15. Mihara, M. et al. Absence of mutation of the p73 gene localized at chromosome 1p36.3 in hepatocellular carcinoma. Br. J. Cancer 79, 164–167 (1999).

    Article  CAS  Google Scholar 

  16. Hammond, C., Jeffers, L., Carr, B. I. & Simon, D. Multiple genetic alterations, 4q28, a new suppressor region, and potential gender differences in human hepatocellular carcinoma. Hepatology 29, 1479–1485 (1999).

    Article  CAS  Google Scholar 

  17. Koshikawa, K. et al. Allelic imbalance at 1p36 in the pathogenesis of human hepatocellular carcinoma. Hepatogastroenterology 51, 186–191 (2004).

    PubMed  Google Scholar 

  18. Yeh, S. H. et al. Chromosomal allelic imbalance evolving from liver cirrhosis to hepatocellular carcinoma. Gastroenterology 121, 699–709 (2001).

    Article  CAS  Google Scholar 

  19. Fang, W., Piao, Z., Simon, D., Sheu, J. C. & Huang, S. Mapping of a minimal deleted region in human hepatocellular carcinoma to 1p36.13-p36.23 and mutational analysis of the RIZ (PRDM2) gene localized to the region. Genes Chromosomes Cancer 28, 269–275 (2000).

    Article  CAS  Google Scholar 

  20. Nishimura, T. et al. Discrete breakpoint mapping and shortest region of overlap of chromosome arm 1q gain and 1p loss in human hepatocellular carcinoma detected by semiquantitative microsatellite analysis. Genes Chromosomes Cancer 42, 34–43 (2005).

    Article  CAS  Google Scholar 

  21. Li, S. P. et al. Genome-wide analyses on loss of heterozygosity in hepatocellular carcinoma in Southern China. J. Hepatol. 34, 840–849 (2001).

    Article  CAS  Google Scholar 

  22. Zhang, S. H., Cong, W. M., Xian, Z. H. & Wu, M. C. Clinicopathological significance of loss of heterozygosity and microsatellite instability in hepatocellular carcinoma in China. World J Gastroenterol. 11, 3034–3039 (2005).

    Article  CAS  Google Scholar 

  23. Dykema, K. J. & Furge, K. A. Diminished transcription of chromosome arm 4q is inversely related to local spreading of hepatocellular carcinoma. Genes Chromosomes Cancer 41, 390–394 (2004).

    Article  CAS  Google Scholar 

  24. Zhang, L. H. et al. Allelic imbalance regions on chromosomes 8p, 17p and 19p related to metastasis of hepatocellular carcinoma: comparison between matched primary and metastatic lesions in 22 patients by genome-wide microsatellite analysis. J. Cancer Res. Clin. Oncol. 129, 279–286 (2003).

    CAS  PubMed  Google Scholar 

  25. Katoh, H. et al. Genetic profile of hepatocellular carcinoma revealed by array-based comparative genomic hybridization: identification of genetic indicators to predict patient outcome. J. Hepatol. 43, 863–874 (2005).

    Article  CAS  Google Scholar 

  26. Chen, Y. J. et al. Chromosomal changes and clonality relationship between primary and recurrent hepatocellular carcinoma. Gastroenterology 119, 431–440 (2000).

    Article  CAS  Google Scholar 

  27. Yeh, S. H. et al. Allelic loss of chromosome 4q21 approximately 23 associates with hepatitis B virus-related hepatocarcinogenesis and elevated α-fetoprotein. Hepatology 40, 847–854 (2004).

    CAS  PubMed  Google Scholar 

  28. Okabe, H. et al. Comprehensive allelotype study of hepatocellular carcinoma: potential differences in pathways to hepatocellular carcinoma between hepatitis B virus-positive and -negative tumors. Hepatology 31, 1073–1079 (2000).

    Article  CAS  Google Scholar 

  29. Kahng, Y. S. et al. Loss of heterozygosity of chromosome 8p and 11p in the dysplastic nodule and hepatocellular carcinoma. J. Gastroenterol. Hepatol. 18, 430–436 (2003).

    Article  CAS  Google Scholar 

  30. Liao, C. et al. Identification of the gene for a novel liver-related putative tumor suppressor at a high-frequency loss of heterozygosity region of chromosome 8p23 in human hepatocellular carcinoma. Hepatology 32, 721–727 (2000).

    Article  CAS  Google Scholar 

  31. Pineau, P. et al. Identification of three distinct regions of allelic deletions on the short arm of chromosome 8 in hepatocellular carcinoma. Oncogene 18, 3127–3134 (1999).

    Article  CAS  Google Scholar 

  32. Chan, K. L., Lee, J. M., Guan, X. Y., Fan, S. T. & Ng, I. O. High-density allelotyping of chromosome 8p in hepatocellular carcinoma and clinicopathologic correlation. Cancer 94, 3179–3185 (2002).

    Article  CAS  Google Scholar 

  33. Xu, Z., Liang, L., Wang, H., Li, T. & Zhao, M. HCRP1, a novel gene that is downregulated in hepatocellular carcinoma, encodes a growth-inhibitory protein. Biochem. Biophys. Res. Commun. 311, 1057–1066 (2003).

    Article  CAS  Google Scholar 

  34. Piao, Z. et al. Homozygous deletions of the CDKN2 gene and loss of heterozygosity of 9p in primary hepatocellular carcinoma. Cancer Lett. 122, 201–207 (1998).

    Article  CAS  Google Scholar 

  35. Liew, C. T. et al. Frequent allelic loss on chromosome 9 in hepatocellular carcinoma. Int. J. Cancer 81, 319–324 (1999).

    Article  CAS  Google Scholar 

  36. Zhu, G. N. et al. Loss of heterozygosity on chromosome 10q22–10q23 and 22q11.2–22q12.1 and p53 gene in primary hepatocellular carcinoma. World J Gastroenterol 10, 1975–1978 (2004).

    Article  CAS  Google Scholar 

  37. Ricketts, S. L., Carter, J. C. & Coleman, W. B. Identification of three 11p11.2 candidate liver tumor suppressors through analysis of known human genes. Mol Carcinog 36, 90–99 (2003).

    Article  CAS  Google Scholar 

  38. Chow, V. T., Lim, K. M. & Lim, D. The human DENN gene: genomic organization, alternative splicing, and localization to chromosome 11p11.21–p11.22. Genome 41, 543–552 (1998).

    Article  CAS  Google Scholar 

  39. Lin, Y. W. et al. Loss of heterozygosity at chromosome 13q in hepatocellular carcinoma: identification of three independent regions. Eur. J. Cancer 35, 1730–1734 (1999).

    Article  CAS  Google Scholar 

  40. Wong, C. M., Lee, J. M., Lau, T. C., Fan, S. T. & Ng, I. O. Clinicopathological significance of loss of heterozygosity on chromosome 13q in hepatocellular carcinoma. Clin. Cancer Res. 8, 2266–2272 (2002).

    CAS  PubMed  Google Scholar 

  41. Piao, Z., Park, C., Kim, J. J. & Kim, H. Deletion mapping of chromosome 16q in hepatocellular carcinoma. Br. J. Cancer 80, 850–854 (1999).

    Article  CAS  Google Scholar 

  42. Wang, G. et al. Allelic loss and gain, but not genomic instability, as the major somatic mutation in primary hepatocellular carcinoma. Genes Chromosomes Cancer 31, 221–227 (2001).

    Article  Google Scholar 

  43. Yuan, B. Z., Zhou, X., Zimonjic, D. B., Durkin, M. E. & Popescu, N. C. Amplification and overexpression of the EMS 1 oncogene, a possible prognostic marker, in human hepatocellular carcinoma. J. Mol. Diagn. 5, 48–53 (2003).

    Article  CAS  Google Scholar 

  44. Schlaeger, C. et al. Etiology-dependent molecular mechanisms in human hepatocarcinogenesis. Hepatology 47, 511–520 (2008).

    Article  CAS  Google Scholar 

  45. Mitra, S. K., Hanson, D. A. & Schlaepfer, D. D. Focal adhesion kinase: in command and control of cell motility. Nature Rev. Mol. Cell Biol. 6, 56–68 (2005).

    Article  CAS  Google Scholar 

  46. Miranda, K. C. et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126, 1203–1217 (2006).

    Article  CAS  Google Scholar 

  47. Dovas, A. & Couchman, J. R. RhoGDI: multiple functions in the regulation of Rho family GTPase activities. Biochem. J. 390, 1–9 (2005).

    Article  CAS  Google Scholar 

  48. von Sengbusch, A. et al. Focal adhesion kinase regulates metastatic adhesion of carcinoma cells within liver sinusoids. Am. J. Pathol. 166, 585–596 (2005).

    Article  CAS  Google Scholar 

  49. Zhang, L. et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc. Natl Acad. Sci. USA 103, 9136–9141 (2006).

    Article  CAS  Google Scholar 

  50. Thorgeirsson, S. S., Lee, J. S. & Grisham, J. W. Functional genomics of hepatocellular carcinoma. Hepatology 43, S145–S150 (2006).

    Article  CAS  Google Scholar 

  51. McLean, G. W. et al. The role of focal-adhesion kinase in cancer — a new therapeutic opportunity. Nature Rev. Cancer 5, 505–515 (2005).

    Article  CAS  Google Scholar 

  52. Ozsolak, F. et al. Chromatin structure analyses identify miRNA promoters. Genes Dev. 22, 3172–3183 (2008).

    Article  CAS  Google Scholar 

  53. Corcoran, D. L. et al. Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One 4, e5279 (2009).

    Article  Google Scholar 

  54. Golubovskaya, V., Kaur, A. & Cance, W. Cloning and characterization of the promoter region of human focal adhesion kinase gene: nuclear factor κB and p53 binding sites. Biochim. Biophys. Acta 1678, 111–125 (2004).

    Article  CAS  Google Scholar 

  55. Golubovskaya, V. M. et al. p53 regulates FAK expression in human tumor cells. Mol. Carcinog. 47, 373–382 (2008).

    Article  CAS  Google Scholar 

  56. Loo, L. W. et al. Array comparative genomic hybridization analysis of genomic alterations in breast cancer subtypes. Cancer Res. 64, 8541–8549 (2004).

    Article  CAS  Google Scholar 

  57. Kim, S. W. et al. Analysis of chromosomal changes in serous ovarian carcinoma using high-resolution array comparative genomic hybridization: potential predictive markers of chemoresistant disease. Genes Chromosomes Cancer 46, 1–9 (2007).

    Article  CAS  Google Scholar 

  58. Saramaki, O. R., Porkka, K. P., Vessella, R. L. & Visakorpi, T. Genetic aberrations in prostate cancer by microarray analysis. Int. J. Cancer 119, 1322–1329 (2006).

    Article  CAS  Google Scholar 

  59. Togawa, A. et al. Progressive impairment of kidneys and reproductive organs in mice lacking Rho GDIα. Oncogene 18, 5373–5380 (1999).

    Article  CAS  Google Scholar 

  60. Ishizaki, H. et al. Defective chemokine-directed lymphocyte migration and development in the absence of Rho guanosine diphosphate-dissociation inhibitors α and β. J. Immunol. 177, 8512–8521 (2006).

    Article  CAS  Google Scholar 

  61. Maddala, R., Reneker, L. W., Pendurthi, B. & Rao, P. V. Rho GDP dissociation inhibitor-mediated disruption of Rho GTPase activity impairs lens fiber cell migration, elongation and survival. Dev. Biol. 315, 217–231 (2008).

    Article  CAS  Google Scholar 

  62. Blackhall, F. H. et al. Validating the prognostic value of marker genes derived from a non-small cell lung cancer microarray study. Lung Cancer 46, 197–204 (2004).

    Article  Google Scholar 

  63. Jiang, W. G. et al. Prognostic value of rho GTPases and rho guanine nucleotide dissociation inhibitors in human breast cancers. Clin. Cancer Res. 9, 6432–6440 (2003).

    CAS  PubMed  Google Scholar 

  64. DerMardirossian, C., Schnelzer, A. & Bokoch, G. M. Phosphorylation of RhoGDI by Pak1 mediates dissociation of Rac GTPase. Mol. Cell 15, 117–127 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Didier Trono (School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland) for providing the pWPXL, psPAX2 and pMD2.G plasmids. This work was supported by grants from the Science and Technology Commission of Shanghai Municipality (07DJ14006), the Ministry of Human Resources and Social Security of China (2007-170), and the Ministry of Health of China (2008ZX10002-017).

Author information

Authors and Affiliations

Authors

Contributions

X.H., S.H., H.T. and D.W. planned the experimental design. J.D., S.H., S.W., Y.Z., L.L., M.-X.Y., C.G., J.Y., T.C., M.Y. and J.L. conducted the experiments. J.D., S.H. and X.H. analysed data. X.H., S.H., J.D., H.W. and J.G. wrote the paper.

Corresponding author

Correspondence to Xianghuo He.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1067 kb)

Supplementary Information

Supplementary Table 1 (XLS 36 kb)

Supplementary Information

Supplementary Table 2 (XLS 68 kb)

Supplementary Information

Supplementary Table 3 (XLS 20 kb)

Supplementary Information

Supplementary Table 4 (XLS 32 kb)

Supplementary Information

Supplementary Table 5 (XLS 29 kb)

Supplementary Information

Supplementary Table 6 (XLS 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, J., Huang, S., Wu, S. et al. Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nat Cell Biol 12, 390–399 (2010). https://doi.org/10.1038/ncb2039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2039

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer