Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity

Abstract

Autophagy is characterized by the sequestration of bulk cytoplasm, including damaged proteins and organelles, and delivery of the cargo to lysosomes for degradation. Although the autophagic pathway is also linked to tumour suppression activity, the mechanism is not yet clear. Here we report that cytosolic FoxO1, a forkhead O family protein, is a mediator of autophagy. Endogenous FoxO1 was required for autophagy in human cancer cell lines in response to oxidative stress or serum starvation, but this process was independent of the transcriptional activity of FoxO1. In response to stress, FoxO1 was acetylated by dissociation from sirtuin-2 (SIRT2), a NAD+-dependent histone deacetylase, and the acetylated FoxO1 bound to Atg7, an E1-like protein, to influence the autophagic process leading to cell death. This FoxO1-modulated cell death is associated with tumour suppressor activity in human colon tumours and a xenograft mouse model. Our finding links the anti-neoplastic activity of FoxO1 and the process of autophagy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endogenous FoxO1 is required for induction of autophagy.
Figure 2: Ectopic cytosolic FoxO1 elicits autophagy.
Figure 3: Cellular localization, transactivity or DNA-binding activity of different FoxO1 mutants in H1299 cells or in HCT116 cells in response to serum starvation or H2O2 treatment.
Figure 4: FoxO1 is acetylated in response to serum starvation or oxidative stress by dissociation from SIRT2.
Figure 5: Acetylated FoxO1 interacts with Atg7.
Figure 6: Acetylated FoxO1 is required for the induction of autophagy.
Figure 7: Cytosolic FoxO1 induces autophagic, but not apoptotic, cell death.
Figure 8: Cytosolic FoxO1 shows tumour suppressor activity in a xenograft mouse model, and a relationship between FoxO1 and p62 level in human cancer tissue samples.

Similar content being viewed by others

References

  1. Klionsky, D. J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nature Rev. Mol. Cell Biol. 8, 931–937 (2007).

    Article  CAS  Google Scholar 

  2. Levine, B. & Klionsky, D. J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6, 463–477 (2004).

    Article  CAS  Google Scholar 

  3. Baehrecke, E. H. Autophagy: dual roles in life and death? Nature Rev. Mol. Cell Biol. 6, 505–510 (2005).

    Article  CAS  Google Scholar 

  4. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  CAS  Google Scholar 

  5. Mathew, R. et al. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev. 21, 1367–1381 (2007).

    Article  CAS  Google Scholar 

  6. Karantza-Wadsworth, V. et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev. 21, 1621–1635 (2007).

    Article  CAS  Google Scholar 

  7. Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature 432, 1032–1036 (2004).

    Article  CAS  Google Scholar 

  8. Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425–434 (2005).

    Article  CAS  Google Scholar 

  9. Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006).

    Article  CAS  Google Scholar 

  10. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    Article  CAS  Google Scholar 

  11. Onodera, J. & Ohsumi, Y. Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J. Biol. Chem. 280, 31582–31586 (2005).

    Article  CAS  Google Scholar 

  12. Levine, B. Cell biology: autophagy and cancer. Nature 446, 745–747 (2007).

    Article  CAS  Google Scholar 

  13. Aita, V. M. et al. Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 59, 59–65 (1999).

    Article  CAS  Google Scholar 

  14. Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999).

    Article  CAS  Google Scholar 

  15. Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 112, 1809–1820 (2003).

    Article  CAS  Google Scholar 

  16. Yue, Z., Jin, S., Yang, C., Levine, A. J. & Heintz, N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl Acad. Sci. USA 100, 15077–15082 (2003).

    Article  CAS  Google Scholar 

  17. Marino, G. et al. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J. Biol. Chem. 282, 18573–18583 (2007).

    Article  CAS  Google Scholar 

  18. Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).

    Article  CAS  Google Scholar 

  19. Lin, K., Dorman, J. B., Rodan, A. & Kenyon, C. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278, 1319–1322 (1997).

    Article  CAS  Google Scholar 

  20. Ogg, S. et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994–999 (1997).

    Article  CAS  Google Scholar 

  21. Lee, S. S., Kennedy, S., Tolonen, A. C. & Ruvkun, G. DAF-16 target genes that control C. elegans life-span and metabolism. Science 300, 644–647 (2003).

    Article  CAS  Google Scholar 

  22. Greer, E. L. & Brunet, A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24, 7410–7425 (2005).

    Article  CAS  Google Scholar 

  23. Lam, E. W., Francis, R. E. & Petkovic, M. FOXO transcription factors: key regulators of cell fate. Biochem. Soc. Trans. 34, 722–726 (2006).

    Article  CAS  Google Scholar 

  24. van der Horst, A. & Burgering, B. M. Stressing the role of FoxO proteins in lifespan and disease. Nature Rev. Mol. Cell Biol. 8, 440–450 (2007).

    Article  CAS  Google Scholar 

  25. Arden, K. C. FoxOs in tumor suppression and stem cell maintenance. Cell 128, 235–237 (2007).

    Article  CAS  Google Scholar 

  26. Burgering, B. M. & Kops, G. J. Cell cycle and death control: long live Forkheads. Trends Biochem. Sci. 27, 352–360 (2002).

    Article  CAS  Google Scholar 

  27. Juhasz, G. et al. Gene expression profiling identifies FKBP39 as an inhibitor of autophagy in larval Drosophila fat body. Cell Death Differ. 14, 1181–1190 (2007).

    Article  CAS  Google Scholar 

  28. Mammucari, C. et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 6, 458–471 (2007).

    Article  CAS  Google Scholar 

  29. Zhao, J. et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 6, 472–483 (2007).

    Article  CAS  Google Scholar 

  30. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4, 151–175 (2008).

    Article  CAS  Google Scholar 

  31. Essaghir, A., Dif, N., Marbehant, C. Y., Coffer, P. J. & Demoulin, J. B. The transcription of FOXO genes is stimulated by FOXO3 and repressed by growth factors. J. Biol. Chem. 284, 10334–10342 (2009).

    Article  CAS  Google Scholar 

  32. Al-Mubarak, B., Soriano, F. X. & Hardingham, G. E. Synaptic NMDAR activity suppresses FOXO1 expression via a cis-acting FOXO binding site: FOXO1 is a FOXO target gene. Channels (Austin) 3, 233–238 (2009).

    Article  CAS  Google Scholar 

  33. Liu, P., Li, S., Gan, L., Kao, T. P. & Huang, H. A transcription-independent function of FOXO1 in inhibition of androgen-independent activation of the androgen receptor in prostate cancer cells. Cancer Res. 68, 10290–10299 (2008).

    Article  CAS  Google Scholar 

  34. Ramaswamy, S., Nakamura, N., Sansal, I., Bergeron, L. & Sellers, W. R. A novel mechanism of gene regulation and tumor suppression by the transcription factor FKHR. Cancer Cell 2, 81–91 (2002).

    Article  CAS  Google Scholar 

  35. Cao, Y. et al. Interaction of FoxO1 and TSC2 induces insulin resistance through activation of the mammalian target of rapamycin/p70 S6K pathway. J. Biol. Chem. 281, 40242–40251 (2006).

    Article  CAS  Google Scholar 

  36. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  Google Scholar 

  37. Huang, H., Regan, K. M., Lou, Z., Chen, J. & Tindall, D. J. CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science 314, 294–27 (2006).

    Article  CAS  Google Scholar 

  38. Kawamori, D. et al. The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J. Biol. Chem. 281, 1091–1098 (2006).

    Article  CAS  Google Scholar 

  39. Essers, M. A. et al. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J. 23, 4802–4812 (2004).

    Article  CAS  Google Scholar 

  40. Rena, G. et al. Two novel phosphorylation sites on FKHR that are critical for its nuclear exclusion. EMBO J. 21, 2263–2271 (2002).

    Article  CAS  Google Scholar 

  41. Kitamura, Y. I. et al. FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metab. 2, 153–163 (2005).

    Article  CAS  Google Scholar 

  42. Kalaany, N. Y. & Sabatini, D. M. Tumours with PI3K activation are resistant to dietary restriction. Nature 458, 725–731 (2009).

    Article  CAS  Google Scholar 

  43. Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011–2015 (2004).

    Article  CAS  Google Scholar 

  44. Motta, M. C. et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551–563 (2004).

    Article  CAS  Google Scholar 

  45. Daitoku, H. et al. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc. Natl Acad. Sci. USA 101, 10042–10047 (2004).

    Article  CAS  Google Scholar 

  46. Jing, E., Gesta, S. & Kahn, C. R. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 6, 105–114 (2007).

    Article  CAS  Google Scholar 

  47. Lee, I. H. et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl Acad. Sci. USA 105, 3374–3379 (2008).

    Article  CAS  Google Scholar 

  48. Dryden, S. C., Nahhas, F. A., Nowak, J. E., Goustin, A. S. & Tainsky, M. A. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol. Cell. Biol. 23, 3173–3185 (2003).

    Article  CAS  Google Scholar 

  49. North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M. & Verdin, E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell 11, 437–444 (2003).

    Article  CAS  Google Scholar 

  50. Yang, Y. et al. Acetylation of FoxO1 activates Bim expression to induce apoptosis in response to histone deacetylase inhibitor depsipeptide treatment. Neoplasia 11, 313–324 (2009).

    Article  CAS  Google Scholar 

  51. Wang, F. & Tong, Q. SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma. Mol. Biol. Cell 20, 801–808 (2009).

    Article  CAS  Google Scholar 

  52. Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature 408, 488–492 (2000).

    Article  CAS  Google Scholar 

  53. Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395–398 (1998).

    Article  CAS  Google Scholar 

  54. Geng, J. & Klionsky, D. J. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep. 9, 859–864 (2008).

    Article  CAS  Google Scholar 

  55. Sou, Y. S., Tanida, I., Komatsu, M., Ueno, T. & Kominami, E. Phosphatidylserine in addition to phosphatidylethanolamine is an in vitro target of the mammalian Atg8 modifiers, LC3, GABARAP, and GATE-16. J. Biol. Chem. 281, 3017–3024 (2006).

    Article  CAS  Google Scholar 

  56. Liang, C. et al. Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nature Cell Biol. 10, 776–787 (2008).

    Article  CAS  Google Scholar 

  57. Takahashi, Y. et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nature Cell Biol. 9, 1142–1151 (2007).

    Article  CAS  Google Scholar 

  58. Sun, Q. et al. Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc. Natl Acad. Sci. USA 105, 19211–19216 (2008).

    Article  CAS  Google Scholar 

  59. Zhong, Y. et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1–phosphatidylinositol-3-kinase complex. Nature Cell Biol. 11, 468–476 (2009).

    Article  CAS  Google Scholar 

  60. Matsunaga, K. et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nature Cell Biol. 11, 385–396 (2009).

    Article  CAS  Google Scholar 

  61. Arico, S. et al. The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J. Biol. Chem. 276, 35243–35246 (2001).

    Article  CAS  Google Scholar 

  62. Codogno, P. & Meijer, A. J. Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ. 12 (Suppl. 2), 1509–1518 (2005).

    Article  CAS  Google Scholar 

  63. Yu, L. et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304, 1500–1502 (2004).

    Article  CAS  Google Scholar 

  64. Shimizu, S. et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nature Cell Biol. 6, 1221–1228 (2004).

    Article  CAS  Google Scholar 

  65. Kroemer, G. & Jaattela, M. Lysosomes and autophagy in cell death control. Nature Rev. Cancer 5, 886–897 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Noboru Mizushima for critical reading of the manuscript and for constructive comments. We also thank Noboru Mizushima, Akiyoshi Fukamizu, Qiang Tong and Toren Finkel for providing us with the plasmids used in this study. This study was supported by the National Natural Science Foundation of China (grants 30425017, 90919030 and 30921062) and grants (2005CB522403, 2006CB910300 and B07001) from the Ministry of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. performed most of the experimental work. J.Y. performed mRNA expression experiments. W. L. performed the construction and extraction of plasmids. X.L. and D.W. performed experiments on nude mice. H.Z and S.W. provided human colon cancer tissues and normal tissues and conducted pathological analysis on human samples. J.F. helped the data analysis. L.Y. helped in the design of some experiments. W.G.Z. wrote the manuscript and supervised the project.

Corresponding author

Correspondence to Wei-Guo Zhu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1276 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Yang, J., Liao, W. et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol 12, 665–675 (2010). https://doi.org/10.1038/ncb2069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2069

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing