Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells

Abstract

Endothelial cells establish an instructive vascular niche that reconstitutes haematopoietic stem and progenitor cells (HSPCs) through release of specific paracrine growth factors, known as angiocrine factors. However, the mechanism by which endothelial cells balance the rate of proliferation and lineage-specific differentiation of HSPCs is unknown. Here, we demonstrate that Akt activation in endothelial cells, through recruitment of mTOR, but not the FoxO pathway, upregulates specific angiocrine factors that support expansion of CD34Flt3 KLS HSPCs with long-term haematopoietic stem cell (LT-HSC) repopulation capacity. Conversely, co-activation of Akt-stimulated endothelial cells with p42/44 MAPK shifts the balance towards maintenance and differentiation of the HSPCs. Selective activation of Akt1 in the endothelial cells of adult mice increased the number of colony forming units in the spleen and CD34Flt3 KLS HSPCs with LT-HSC activity in the bone marrow, accelerating haematopoietic recovery. Therefore, the activation state of endothelial cells modulates reconstitution of HSPCs through the modulation of angiocrine factors, with Akt–mTOR-activated endothelial cells supporting the self-renewal of LT-HSCs and expansion of HSPCs, whereas MAPK co-activation favours maintenance and lineage-specific differentiation of HSPCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Establishment of Akt- or MAPK-activated PECs.
Figure 2: Akt-activated PECs are more efficient than MAPK-activated PECs in expanding HSPCs.
Figure 3: HSPC expansion on PECs requires direct cellular interaction.
Figure 4: Activation state of the PECs determines the expression pattern of HSPC-active genes.
Figure 5: Activation of Akt-mTOR pathway in endothelial cells promotes expansion of HSPCs.
Figure 6: Endothelial-specific expression of constitutively active Akt1 (myrAkt) in the adult mice augments HSPC generation and accelerates haematopoiesis.
Figure 7: Akt-activated endothelial cells support expansion of short- and long-term repopulating HSCs in adult mice.

Similar content being viewed by others

References

  1. Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003).

    Article  CAS  Google Scholar 

  2. Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    Article  CAS  Google Scholar 

  3. Kollet, O. et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat. Med. 12, 657–664 (2006).

    Article  CAS  Google Scholar 

  4. Scadden, D. T. The stem-cell niche as an entity of action. Nature 441, 1075–1079 (2006).

    Article  CAS  Google Scholar 

  5. Kiel, M. J. & Morrison, S. J. Uncertainty in the niches that maintain haematopoietic stem cells. Nat. Rev. Immunol. 8, 290–301 (2008).

    Article  CAS  Google Scholar 

  6. Hooper, A. T. et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4, 263–274 (2009).

    Article  CAS  Google Scholar 

  7. Heissig, B. et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of Kit-ligand. Cell 109, 625–637 (2002).

    Article  CAS  Google Scholar 

  8. Lane, S. W., Scadden, D. T. & Gilliland, D. G. The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 114, 1150–1157 (2009).

    Article  CAS  Google Scholar 

  9. Avecilla, S. T. et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat. Med. 10, 64–71 (2004).

    Article  CAS  Google Scholar 

  10. Butler, J. M., Kobayashi, H. & Rafii, S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat. Rev. Cancer 10, 138–146 (2010).

    Article  CAS  Google Scholar 

  11. Ding, B. et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature doi:10.1038nature09493 (2010).

  12. Butler, J. M. et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6, 251–264 (2010).

    Article  CAS  Google Scholar 

  13. Libby, P., Ridker, P. M. & Maseri, A. Inflammation and atherosclerosis. Circulation 105, 1135–1143 (2002).

    Article  CAS  Google Scholar 

  14. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 27–31 (1995).

    Article  CAS  Google Scholar 

  15. Fernandez, L. et al. Tumor necrosis factor-alpha and endothelial cells modulate Notch signaling in the bone marrow microenvironment during inflammation. Exp. Hematol. 36, 545–558 (2008).

    Article  CAS  Google Scholar 

  16. Yeoh, J.S. et al. Fibroblast growth factor-1 and -2 preserve long-term repopulating ability of hematopoietic stem cells in serum-free cultures. Stem Cells 24, 1564–1572 (2006).

    Article  CAS  Google Scholar 

  17. Seandel, M. et al. Generation of a functional and durable vascular niche by the adenoviral E4ORF1 gene. Proc. Natl Acad. Sci. USA 105, 19288–19293 (2008).

    Article  CAS  Google Scholar 

  18. Shiojima, I. & Walsh, K. Role of Akt signaling in vascular homeostasis and angiogenesis. Circ. Res. 90, 1243–1250 (2002).

    Article  CAS  Google Scholar 

  19. Phung, T. L. et al. Pathological angiogenesis is induced by sustained Akt signalling and inhibited by rapamycin. Cancer Cell 10, 159–170 (2006).

    Article  CAS  Google Scholar 

  20. Pages, G. et al. Signaling angiogenesis via p42/p44 MAP kinase cascade. Ann. N. Y. Acad. Sci. 902, 187–200 (2000).

    Article  CAS  Google Scholar 

  21. Matsunaga, T., Kato, T., Miyazaki, H. & Ogawa, M. Thrombopoietin promotes the survival of murine hematopoietic long-term reconstituting cells: comparison with the effects of FLT3/FLK-2 ligand and interleukin-6. Blood 92, 452–461 (1998).

    CAS  PubMed  Google Scholar 

  22. Nemeth, M.J., Topol, L., Anderson, S.M., Yang, Y. & Bodine, D.M. Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation. Proc. Natl Acad. Sci. USA 104, 15436–15441 (2007).

    Article  CAS  Google Scholar 

  23. Zhang, C. C. & Lodish, H. F. Insulin-like growth factor 2 expressed in a novel fetal liver cell population is a growth factor for hematopoietic stem cells. Blood 103, 2513–2521 (2004).

    Article  CAS  Google Scholar 

  24. Humar, R., Kiefer, F.N., Berns, H., Resink, T.J. & Battegay, E.J. Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. FASEB J. 16, 771–780 (2002).

    Article  CAS  Google Scholar 

  25. Potente, M. et al. Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J. Clin. Invest. 115, 2382–2392 (2005).

    Article  CAS  Google Scholar 

  26. Sun, J.F. et al. Microvascular patterning is controlled by fine-tuning the Akt signal. Proc. Natl Acad. Sci. USA 102, 128–133 (2005).

    Article  CAS  Google Scholar 

  27. Huynh, H. et al. Insulin-like growth factor-binding protein 2 secreted by a tumorigenic cell line supports ex vivo expansion of mouse hematopoietic stem cells. Stem Cells 26, 1628–1635 (2008).

    Article  CAS  Google Scholar 

  28. Zhang, C. C., Kaba, M., Iizuka, S., Huynh, H. & Lodish, H. F. Angiopoietin-like 5 and IGFBP2 stimulate ex vivo expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplantation. Blood 111, 3415–3423 (2008).

    Article  CAS  Google Scholar 

  29. Han, W., Ye, Q. & Moore, M. A. A soluble form of human Delta-like-1 inhibits differentiation of hematopoietic progenitor cells. Blood 95, 1616–1625 (2000).

    CAS  PubMed  Google Scholar 

  30. Gering, M. & Patient, R. Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos. Dev. Cell 8, 389–400 (2005).

    Article  CAS  Google Scholar 

  31. Goldman, D. C. et al. BMP4 regulates the hematopoietic stem cell niche. Blood 114, 4393–4401 (2009).

    Article  CAS  Google Scholar 

  32. Fleming, H. E. et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2, 274–283 (2008).

    Article  CAS  Google Scholar 

  33. Kopp, H.G. et al. Tie2 activation contributes to hemangiogenic regeneration after myelosuppression. Blood 106, 505–513 (2005).

    Article  CAS  Google Scholar 

  34. Kopp, H.G. et al. Thrombospondins deployed by thrombopoietic cells determine angiogenic switch and extent of revascularization. J. Clin. Invest. 116, 3277–3291 (2006).

    Article  CAS  Google Scholar 

  35. Dimmeler, S. & Zeiher, A. M. Akt takes center stage in angiogenesis signaling. Circ. Res. 86, 4–5 (2000).

    Article  CAS  Google Scholar 

  36. Cross, M. J. & Claesson-Welsh, L. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol. Sci 22, 201–207 (2001).

    Article  CAS  Google Scholar 

  37. Rafii, S. et al. Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion. Blood 84, 10–19 (1994).

    CAS  PubMed  Google Scholar 

  38. Tang, E. D., Nunez, G., Barr, F. G. & Guan, K. L. Negative regulation of the forkhead transcription factor FKHR by Akt. J. Biol. Chem. 274, 16741–16746 (1999).

    Article  CAS  Google Scholar 

  39. Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.R. is supported by Howard Hughes Medical Institute; Ansary Stem Cell Institute; National Institute of Health grants HL097797, U01 HL66592-03, RC1 AI080309; Qatar National Priorities Research Program; Anbinder and Newmans Own Foundations; Empire State Stem Cell Board and the New York State Department of Health grant NYS C024180. We thank G. Lam (Weill Cornell Medical College) for HUVEC culture.

Author information

Authors and Affiliations

Authors

Contributions

S.R. designed the project. H.K., J.M.B. and S.R. designed experiments and wrote the paper. H.K. and J.M.B. performed most of the data collection and data analysis. M.K. and B.B. performed a significant amount of the experimental work. R.D. and L.B. generated and provided myrAkt1 mouse. B.D., D.N., V.C. and K.S. analysed microarray data and provided advice. The work was carried out in the laboratory of S.R.

Corresponding author

Correspondence to Shahin Rafii.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 845 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, H., Butler, J., O'Donnell, R. et al. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol 12, 1046–1056 (2010). https://doi.org/10.1038/ncb2108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing